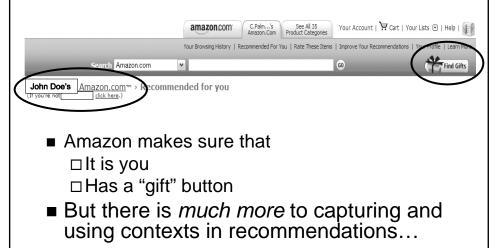
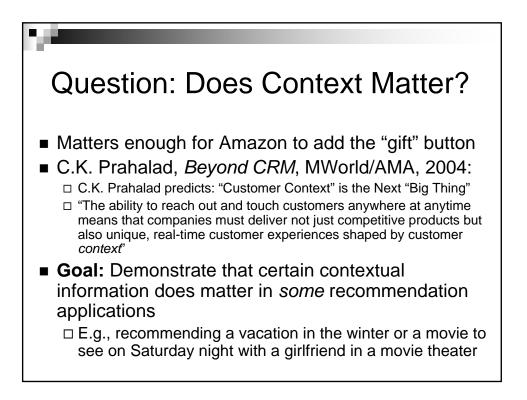
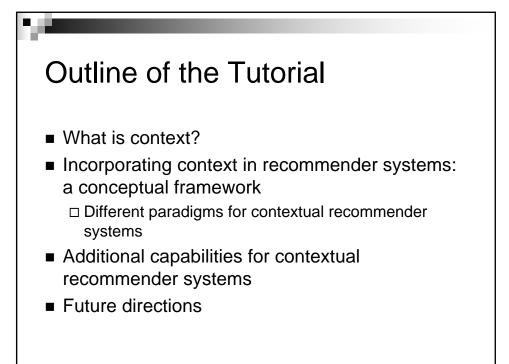
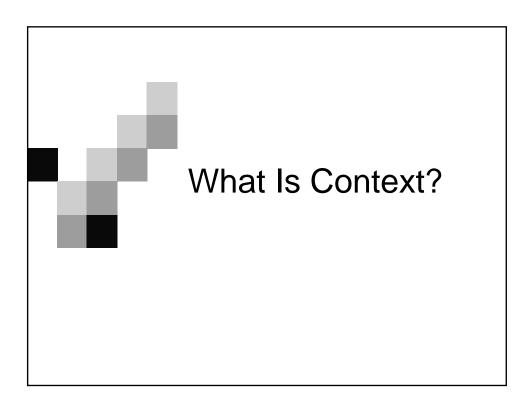


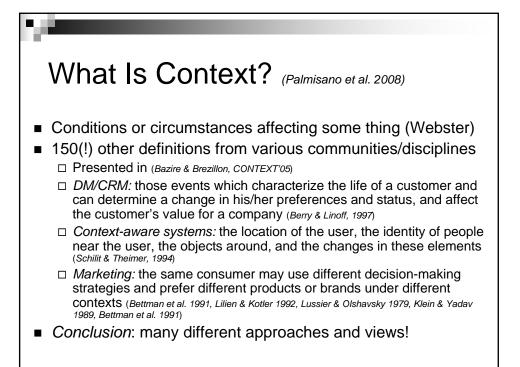
Rudimentary Contextual Recommendations: Amazon

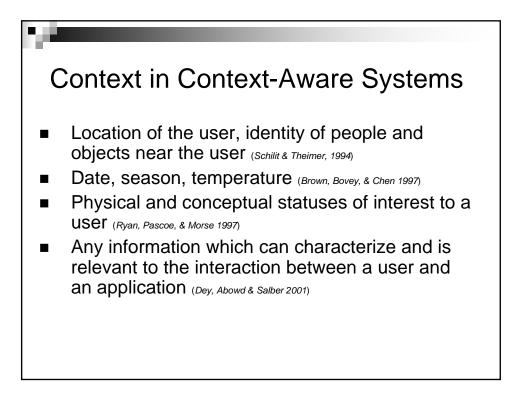






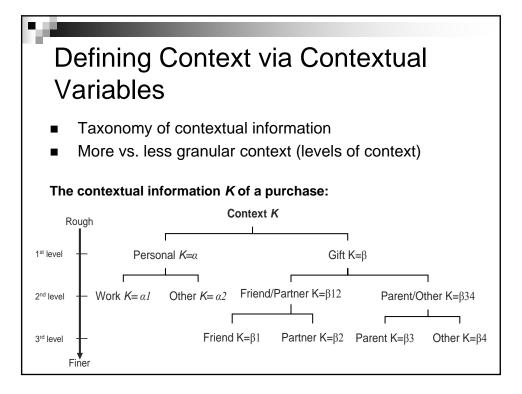


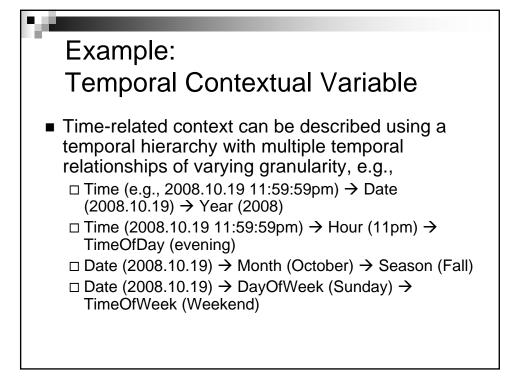


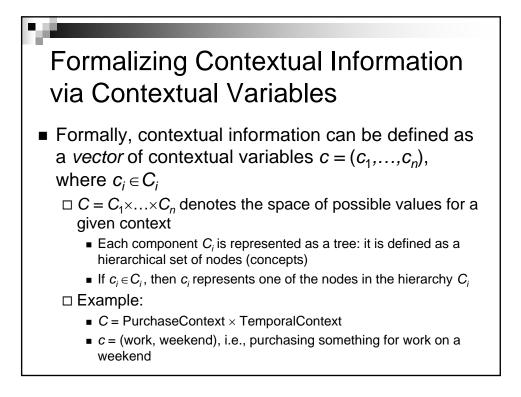


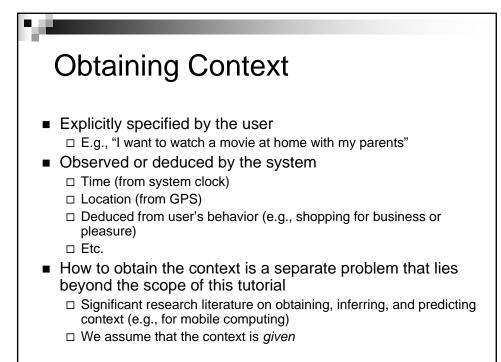
What Is Context in *Recommender Systems*?

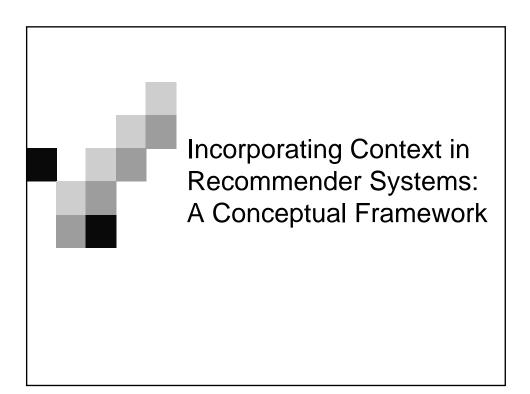
- Additional information, besides information on Users and Items, that is relevant to recommendations
- Relevant in
 - Identifying pertinent subsets of data when computing recommendations
 - □ Building richer rating estimation models
 - Providing various types of constraints on recommendation outcomes
- Examples:
 - □ Exclude gift purchases when recommending products to you
 - Use only *winter-based* ratings when recommending a vacation in the winter

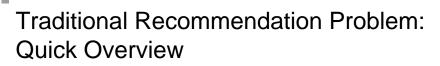




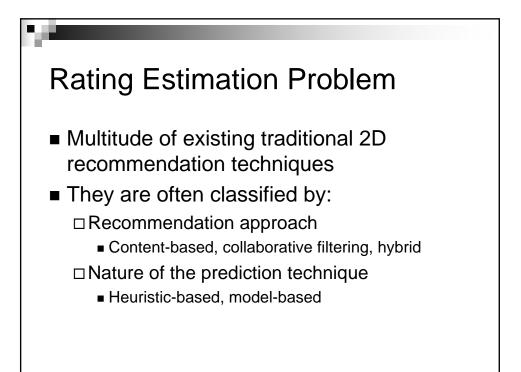


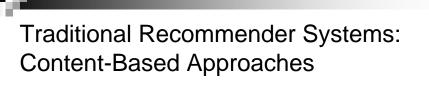






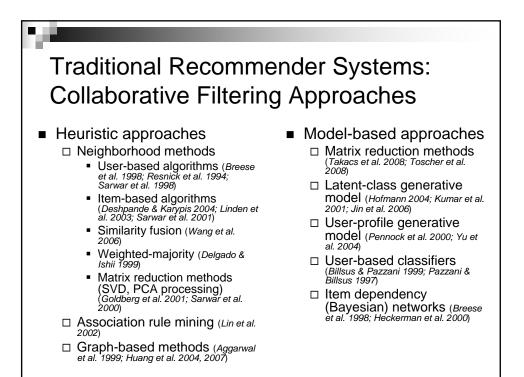
- Two types of entities: Users and Items
- Utility of item *i* for user *u* is represented by some rating *r* (where *r*∈*Rating*)
- Each user typically rates a subset of items
- Recommender system then tries to estimate the unknown ratings, i.e., to extrapolate rating function *R* based on the known ratings:
 - $\Box \ \textit{R: Users} \times \textit{Items} \rightarrow \textit{Rating}$
 - $\hfill\square$ I.e., two-dimensional recommendation framework
- The recommendations to each user are made by offering his/her highest-rated items





Heuristic approaches

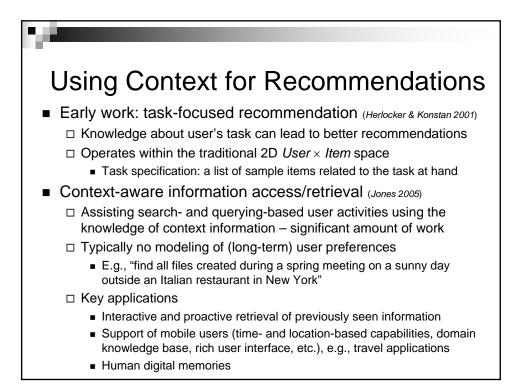
- □ Item similarity methods (Lang 1995; Pazzani & Billsus, 1997; Zhang et al. 2002)
- □ Instance-based learning (Schwab et al. 2000)
- □ Case-based reasoning (Smyth 2007)
- Model-based approaches
 - □ Classification models (Pazzani & Billsus 1997; Mooney & Roy 1998)
 - One-class Naïve Bayes classifier (Schwab et al. 2000)
 - □ Latent-class generative models (*Zhang et al. 2002*)

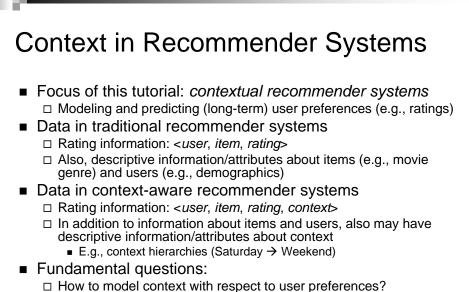


Heuristic approaches

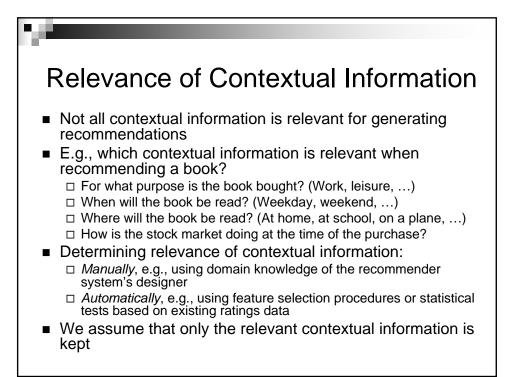
- Combine recommendations
 - Weighted (Claypool et al. 1999)
 - Mixed (Smyth & Cotter 2000)
 - Switching (Billsus & Pazzani 2000)
 - Voting (Pazzani 1999)
- □ Feature augmentation (Melville et al. 2002; Soboroff & Nicholas 1999)
- Graph-based method (Huang et al. 2004)

- Model-based approaches
 - Classifier with multiple types of features (Basu et al. 1998)
 - □ Hierarchical Bayesian (Ansari et al. 2000; Condliff et al. 1999)
 - □ Latent-class generative models (Popescul et al. 2001; Schein et al. 2002)
 - Relational learning methods (probabilistic relational models) (Getoor & Sahami 1999; Huang et al. 2004; Newton & Greiner 2004)





 Can traditional (non-contextual) recommender systems be used to generate context-aware recommendations?



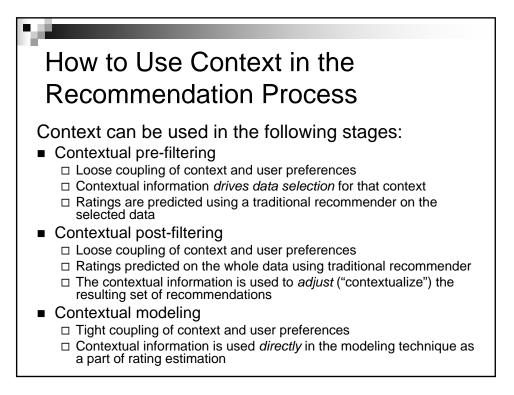
Approaches to Integrating Context and User Preferences

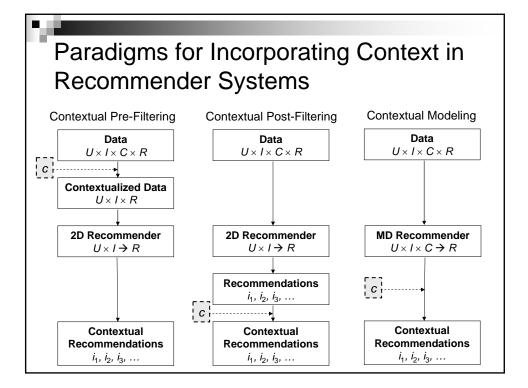
Loose coupling of context and user preferences

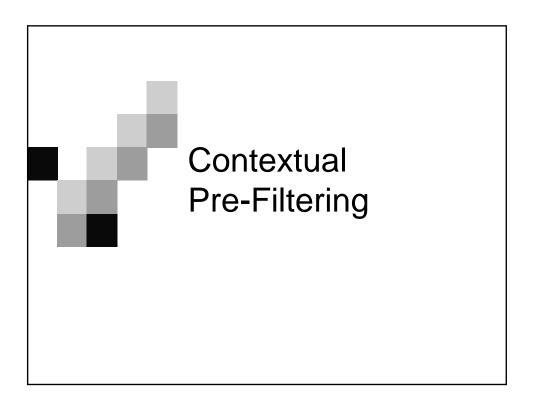
- Assumption: user preferences don't depend on the context; however, the item consumption may depend on the context
- □ E.g., Rating(Me, "For Whom The Bell Tolls") = 9; however, I never read long and serious novels on a weekend
- □ Allows to use traditional non-contextual recommenders

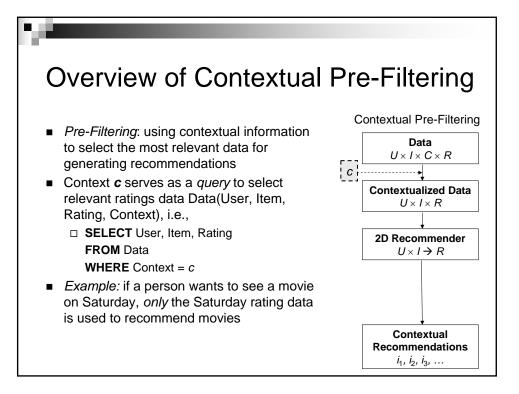
Tight coupling of context and user preferences Assumption: user preferences directly depend on the context

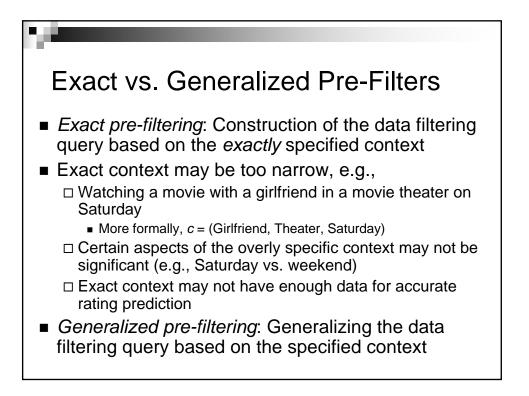
- \Box E.g., Rating(Me, "For Whom The Bell Tolls", Saturday) = 9
- Requires more complex rating prediction techniques
- Which approach to use depends on the application





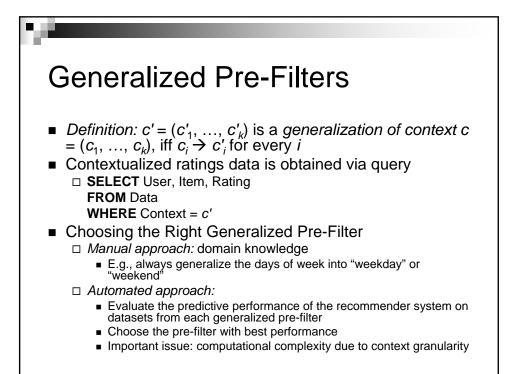


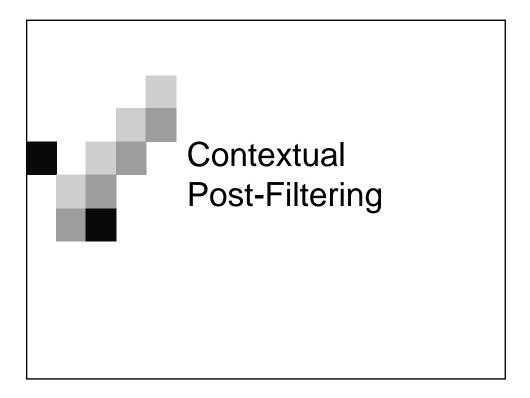


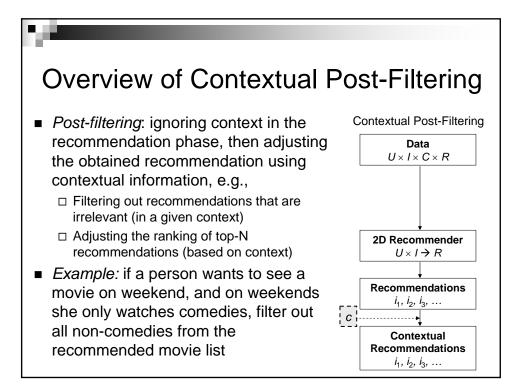


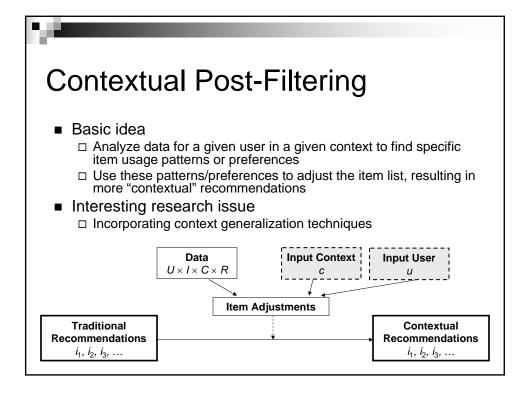
- Different possibilities for this generalization, based on the context taxonomy/granularity
- Example: generalizing *c* = (Girlfriend, Theater, Saturday)
- Assume the following contextual taxonomies (*is-a* or *belongs-to* relationships), derived from context hierarchies:
 - $\Box \text{ Company: Girlfriend} \rightarrow \text{Friends} \rightarrow \text{NotAlone} \rightarrow \text{AnyCompany}$
 - \Box *Place*: Theater \rightarrow AnyPlace
 - \Box *Time*: Saturday \rightarrow Weekend \rightarrow AnyTime
- The following are some examples of generalized context *c*:

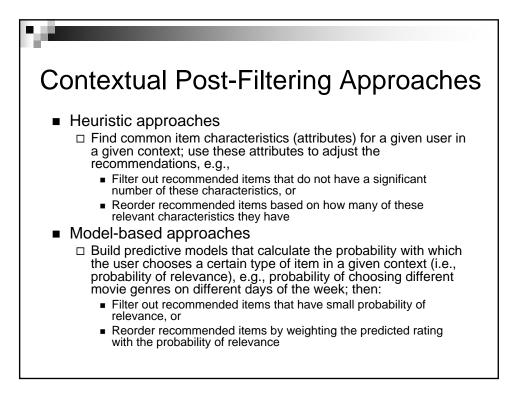
 Girlfriend, AnyPlace, Saturday)
 - □ (Friends, Theater, AnyTime)
 - □ (NotAlone, Theater, Weekend)

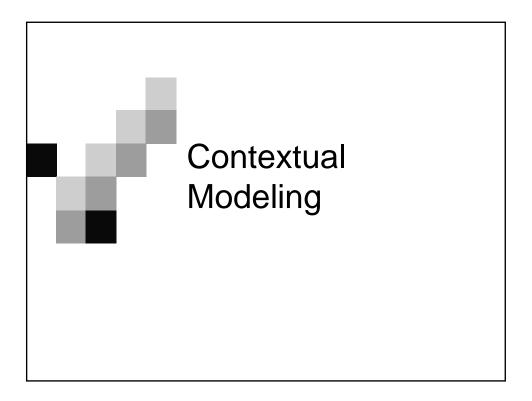


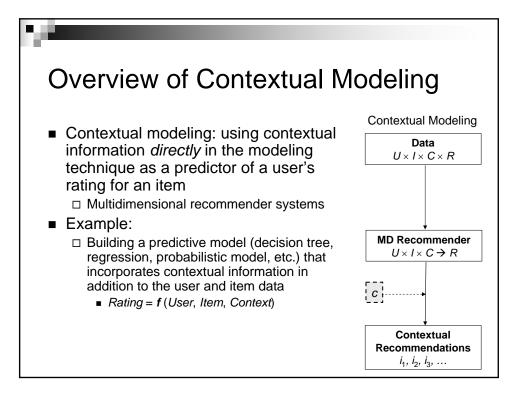


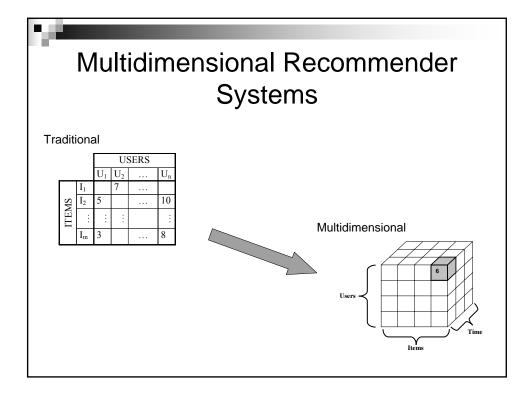


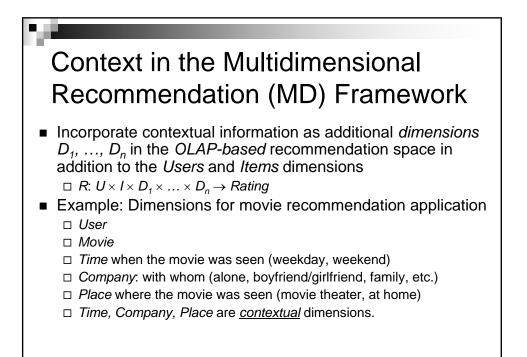


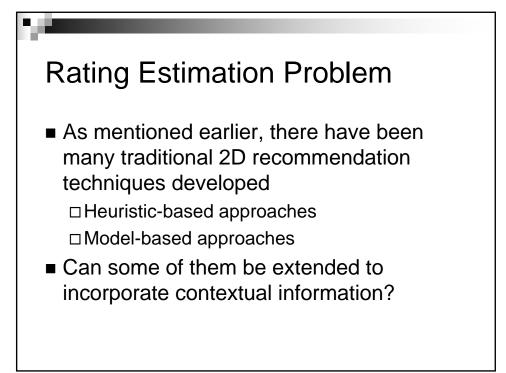


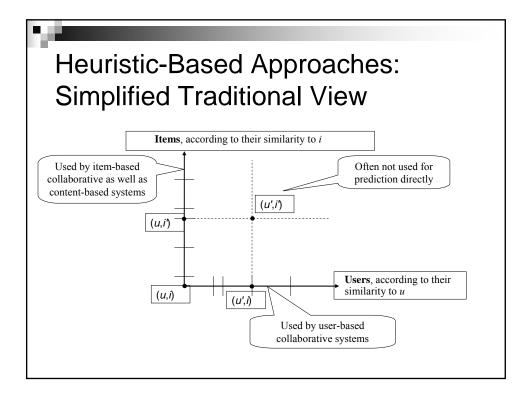


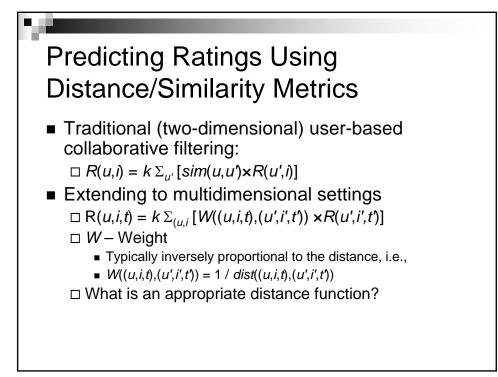


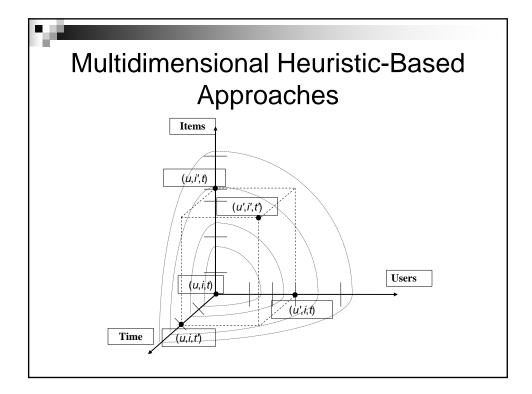


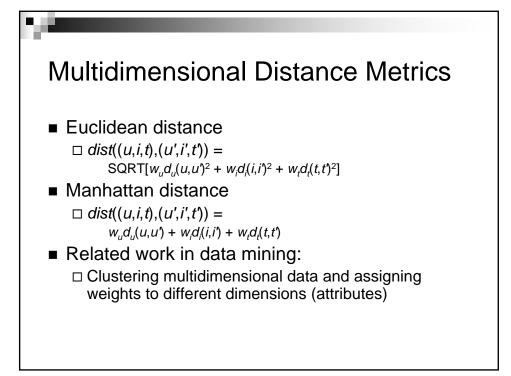


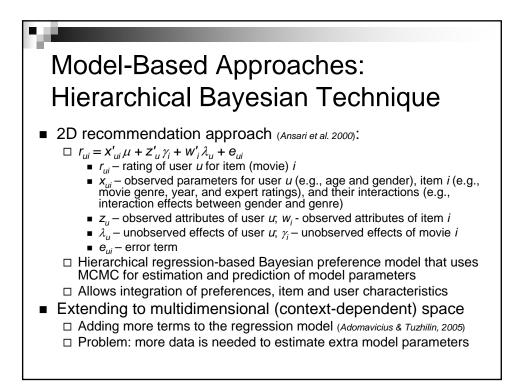


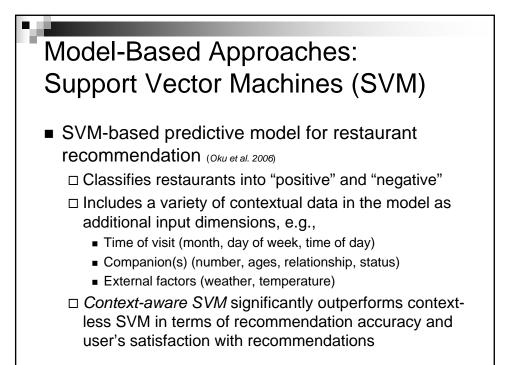


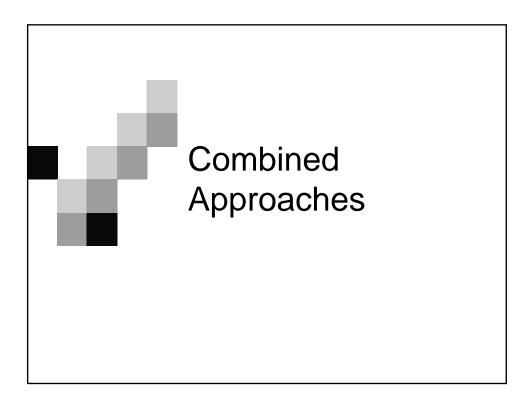


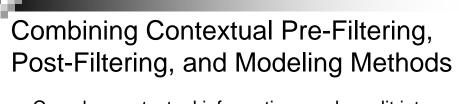




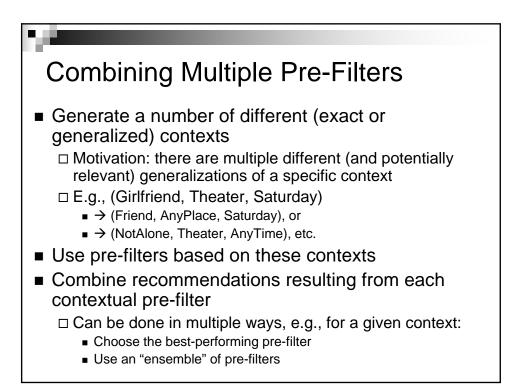


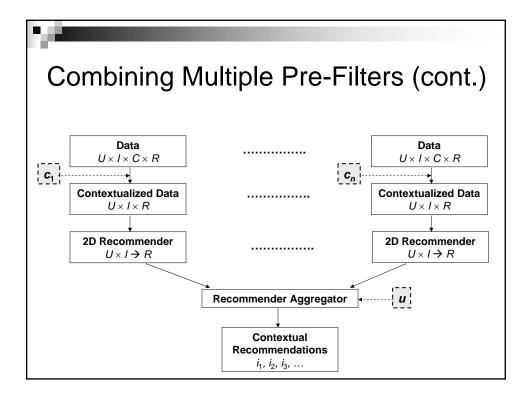


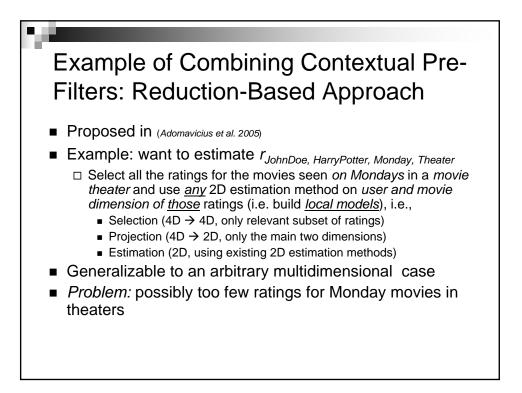


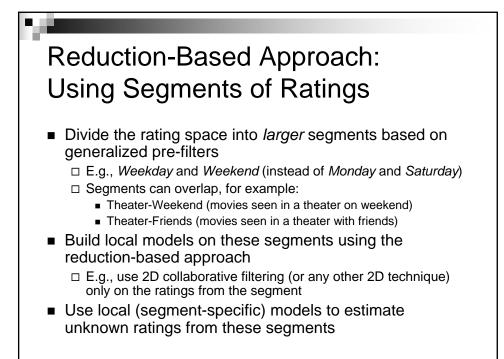


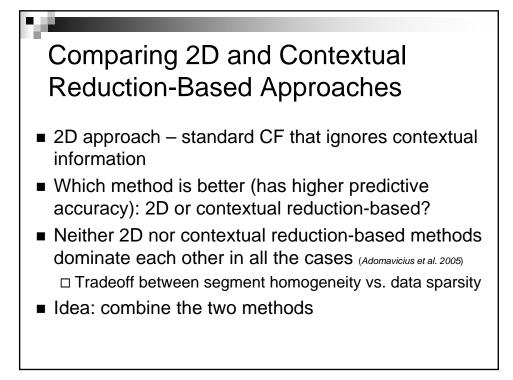
- Complex contextual information can be split into several components
 - □ Each contextual component can be applied at the pre-filtering, post-filtering, and modeling stages
 - E.g., time information (weekday vs. weekend) can be used to pre-filter relevant data, but weather information (sunny vs. rainy) may be more appropriate to use as a post-filter
 - Recommendation results combined at the end using combined (e.g., ensemble) methods
- Open research question: how exactly to do it?
 Will present an example below



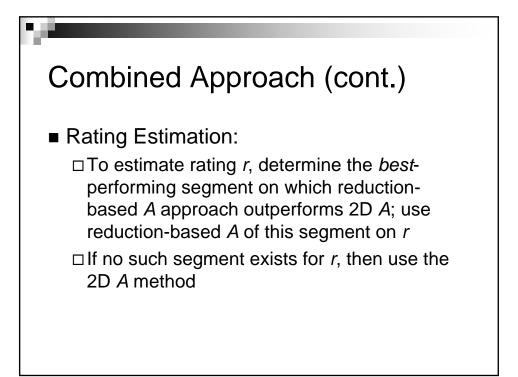


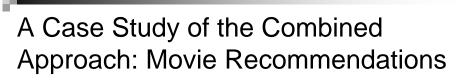




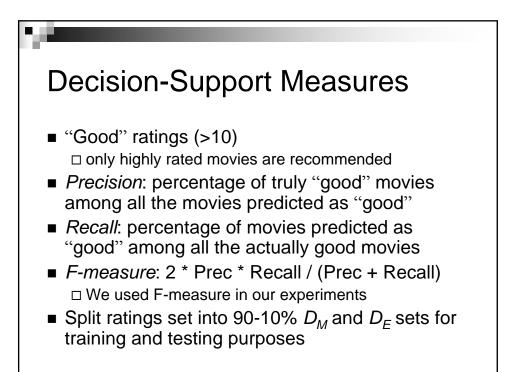


- General idea:
 - Not every piece of contextual information matters
 - □ Given any 2D rating estimation method *A* (e.g., CF), find segments (pre-filters) where contextual reduction-based *A* method dominates 2D *A*; use reduction-based method on these segments and 2D *A* on others
- Algorithm for finding dominating segments (pre-filters):
 - 1. Given the set of known ratings *T*, determine all "large" contextual segments *SEGM*(*T*), e.g., segments having at least *N* ratings
 - 2. Keep only those segments in *SEGM*(*T*) for which reductionbased *A* significantly outperforms 2D *A*
 - 3. Also remove redundant (underperforming) sub-segments





- Built a Web site for the students to enter ratings of movies they saw (Adomavicius et al. 2005)
 - □ 117 students, 1755 ratings, time period 12 months
 - □ Dropped the students who rated less than 10 movies
 - Result: 202 movies, 62 students, 1457 ratings
- Dimensions:
 - □ Student
 - □ Movie
 - □ *Time* when the movie was seen (weekday, weekend)
 - □ Company: with whom (alone, boyfriend/girlfriend, family, etc.)
 - □ Place where the movie was seen (movie theater, at home)
- Ratings: scale from 1 to 13.
- Goal: compare 2D CF with reduction-based CF method



Determine Outperforming
Segments (Step 1)

Identify large contextual segments/pre-filters (> 20% of ratings)

Name	Size	Description
Home	727	Movies watched at home
Friends	565	Movies watched with friends
NonRelease	551	Movies watched not during the 1st weekend of release
Weekend	538	Movies watched on weekends
Theater	526	Movies watched in the movie theater
Weekday	340	Movies watched on weekdays
GBFriend	319	Movies watched with girlfriend/boyfriend
Theater-Weekend	301	Movies watched in the movie theater on weekends
Theater-Friends	274	Movies watched in the movie theater with friends

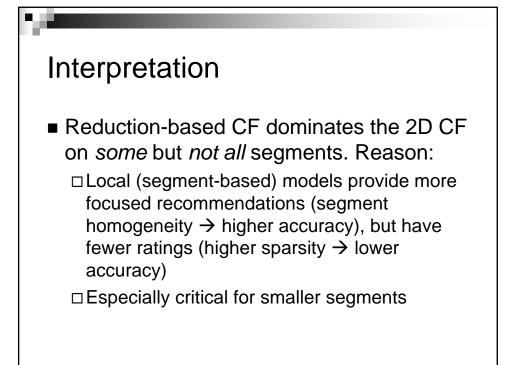
Determine Outperforming Segments (Steps 2 and 3)

Step 2: Find outperforming segments (pre-filters)

	Redbased CF	2D CF
Segment	F-measure	F-measure
Theater/Weekend	0.641	0.528
Theater	0.608	0.479
Theater/Friends	0.607	0.504
Weekend	0.542	0.484

Step 3: Drop redundant underperforming segments

• Theater/Friends is a sub-segment of Theater with lower performance



	Standard	Combined	Difference in
	2D CF	reduction- based CF	F-measure
All predictions (1373 ratings)	0.463	0.526	0.063
Predictions for contextual segments (743 ratings)	0.450	0.545	0.095

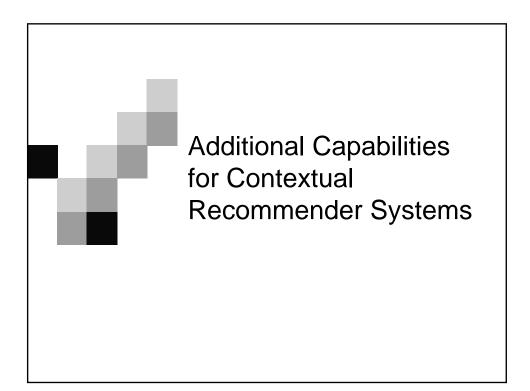
■ Simple:

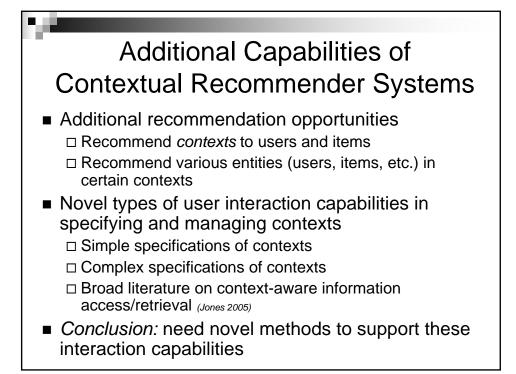
□ Linear combinations of predictive models

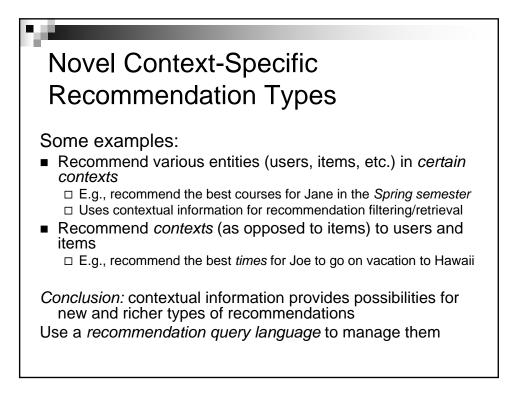
Complex:

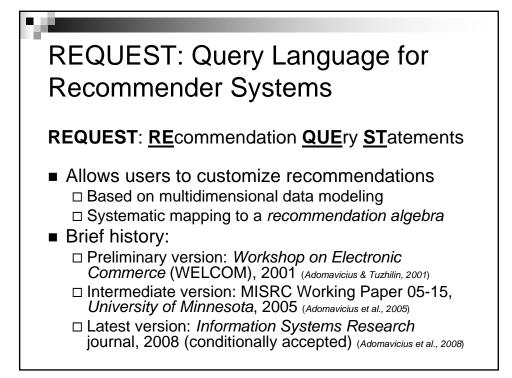
□ Advanced machine learning techniques for model combination, e.g.,

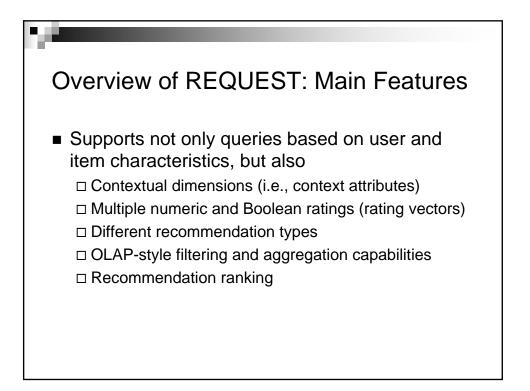
- Boosting (Freund & Schapire 1999)
- Bagging (bootstrap aggregating) (Breiman 1996)
- Stacking (Wolpert 1992)

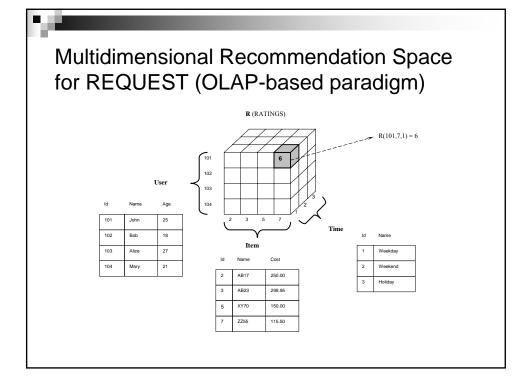




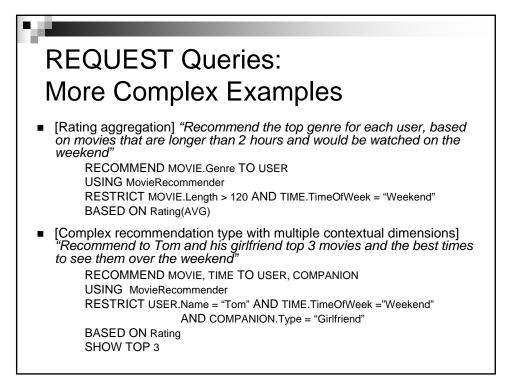


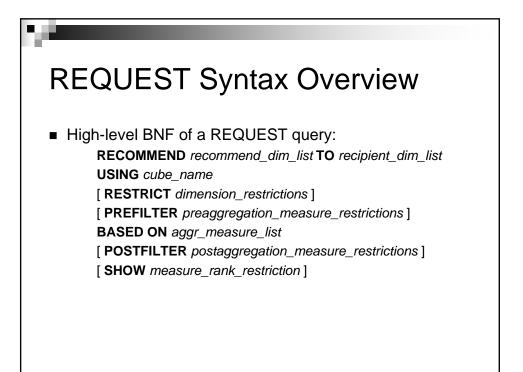


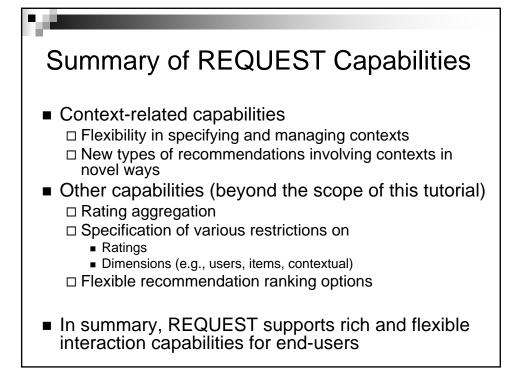


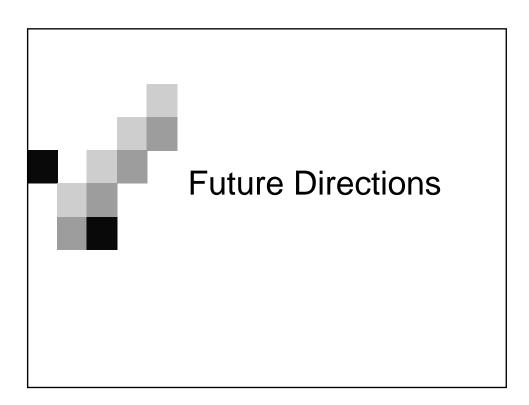


REQUEST Queries: Simple Examples							
	Alice	Memento	10				
 "Classical" (non-contextual) query 		K-PAX	10				
 "Recommend top 3 movies to each user" RECOMMEND MOVIE TO USER USING MovieRecommender BASED ON Rating SHOW TOP 3 		Titanic	9				
	Bob	Star Wars	10				
		Gladiator	9				
		Notorious	8				
	Cindy						
 Simple query with context information: "Recommend best 2 times for each user for all available Hawaii vacations during the spring" RECOMMEND TIME TO USER, VACATION USING VacationRecommender RESTRICT Vacation.Destination = "Hawaii" AND Time.Season = "Spring" BASED ON Rating SHOW TOP 2 							



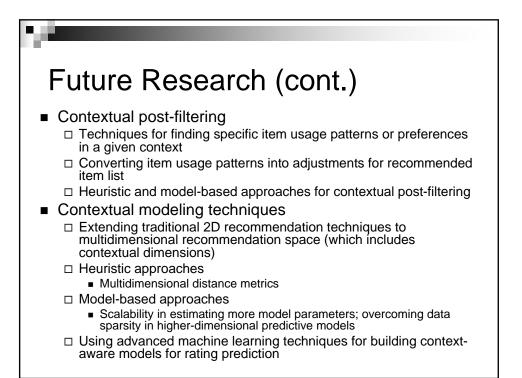


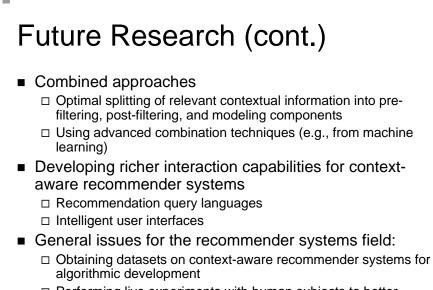




Future Research

- Establishing relevant contextual features E.g., what context matters in a given application?
- Advanced techniques for learning context from data
 E.g., use of latent variables (Hidden Markov Models, Bayesian Networks, etc.)
- Choosing the best approach for a given contextual recommendation setting
 - I.e., whether to use contextual pre-filtering, post-filtering, or modeling
- Contextual pre-filtering/reduction-based techniques
 - □ Finding relevant generalized pre-filters (currently: semiautomated expert-driven process)
 - □ Using different 2D recommendation approaches on different prefilters (contextual segments)





Performing live experiments with human subjects to better evaluate the efficacy of the proposed contextual recommenders

