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he need to validate large amounts of data with the help of the domain expert arises naturally in many data-

intensive applications, including data mining, data stream, and database-related applications. This paper
presents a general validation approach that generalizes different expert-driven validation methods developed
for specialized validation problems. In particular, we model the validation process as a sequence of wvalida-
tion operators, explore various properties of such sequences, and present theoretical results that provide for
better understanding of the validation process. We also address the problem of selecting the best validation
sequence among the class of equivalent sequence permutations. We demonstrate that this optimization problem
is NP-hard and present two heuristic algorithms for improving validation sequences.

Key words: validation; validation operators; validation sequences; sequence optimization; computational
complexity; heuristic algorithms; dynamic programming; data mining

History: Accepted by Amit Basu, Area Editor for Knowledge and Data Management; received June 2003;
revised April 2004, October 2004; accepted May 2005.

1. Introduction and Motivation
This paper addresses the problem of validating large
amounts of data and information generated in various
applications. It is especially common in data mining,
where the need to validate results arises naturally
in the post-analysis stage of the knowledge discov-
ery process. For example, Adomavicius and Tuzhilin
(2001) describe validating user profiles in personal-
ization applications, Tuzhilin and Adomavicius (2002)
describe validating biological relationships in bioin-
formatics, and Klemettinen et al. (1994), Liu and
Hsu (1996), Liu et al. (1999), and Adomavicius (2002)
describe the general issues of validating frequent
itemsets and association rules, discovered by the
Apriori data-mining algorithm (Agrawal et al. 1996).
The personalization problem can generate many rules
(such as “when a person travels on business to
Los Angeles, she tends to stay in expensive hotels
there”) that can be measured in hundreds of millions
for large-scale CRM applications (Adomavicius and
Tuzhilin 2001). Validation determines which of these
rules are truly interesting and which can be discarded
as obvious or irrelevant for a particular application.
Thus, knowledge discovery significantly depends on
the quality of validation.

While data-mining applications are the primary
motivation for this research, the validation problem
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can occur in other types of applications. For exam-
ple, Babu et al. (2004) consider efficient validation
of data streams, where a continuous stream of data
is processed by a set of commutative filters. This
can be critical in many “data-stream” applications
where data are updated continuously and need to
be processed in real time, such as network moni-
toring, sensor processing, telecommunications-fraud
detection, and financial stock monitoring (Babu et al.
2004). Another category of applications is validation
of the transactional data using database queries. For
instance, any application where records in a relational
table have to be classified into several groups by
the domain expert would fit into this category; this
includes student admission processes into colleges,
where all candidates are either accepted, rejected, or
put on a waiting list based on a variety of criteria.
As has been observed (e.g., Brachman and Anand
1996, Fayyad et al. 1996, Silberschatz and Tuzhilin
1996, Provost and Jensen 1998, Lee et al. 1998,
Adomavicius and Tuzhilin 1999, Sahar 1999), knowl-
edge discovery should be an iterative and interac-
tive process with explicit participation of the domain
expert. Many advocate direct involvement of the user
(e.g., domain expert) in validation, and rule valida-
tion in the post-analysis stage of knowledge discovery
has been addressed before (Klemettinen et al. 1994,
Liu and Hsu 1996, Srikant et al. 1997, Imielinski and
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Virmani 1999, Liu et al. 1999). Although particular
validation methods described by Klemettinen et al.
(1994), Srikant et al. (1997), Imielinski and Virmani
(1999), Adomavicius and Tuzhilin (2001), Tuzhilin
and Adomavicius (2002), and Adomavicius (2002)
are different and were developed for different appli-
cations, they have common ideas that go beyond
data mining and can be applied to other important
IT problems, such as processing data streams (Babu
et al. 2004) or validation of transactional data using
database queries. In this paper, we present a gen-
eral theory behind different expert-driven validation
methods for particular validation problems described
above. In particular, we model the validation process
as a sequence of validation operators. Validation oper-
ators were introduced for data-mining rule valida-
tion by Adomavicius and Tuzhilin (1999, 2001) and
Tuzhilin and Adomavicius (2002), where the methods
for generating sequences of these operators were also
studied.

We assume that an initial sequence of validation
operators is already defined. This is usually done
by the domain expert who interactively and itera-
tively generates the sequence using validation tools
(Adomavicius and Tuzhilin 2001). We focus on the
optimization problem of how to replace this initially
specified sequence of validation operators with an
equivalent but more efficient sequence. This is impor-
tant in data mining for the following reasons. First,
new data keep arriving over time and this affects pre-
viously generated patterns, e.g., these patterns may
no longer hold in light of the newly available data.
The new data may also facilitate discovery of com-
pletely new patterns. As a result, it is necessary to
re-evaluate and re-validate the data-mining results. In
large applications having frequently changing data,
this re-evaluation and re-validation process can be
computationally intensive, so it is crucial to validate
sequences in the most efficient manner. Second, val-
idation is an iterative and interactive process, where
the domain expert usually waits for the results of
the previous validation step. Therefore, generation of
more efficient sequences would reduce the domain
expert’s waiting time. This is crucial in large-scale
applications dealing with millions of generated pat-
terns where excessive waiting time can easily make
the validation process impractical.

Moreover, the need for efficient validation exists
beyond data mining. For example, work on data
streams (Babu et al. 2004) considers not only data-
stream processing, but also investigates optimizing the
sequences of pipelined filters. This is important for
data streams because stream validation often must
occur in real time, and it is crucial to validate these
streams faster than the data arrive.

To keep the problem applicable to a broad set of
applications, we study validation of such sequences in

a setting that is more general and abstract than a spe-
cific application of data mining rules. We also study
properties of these sequences, including sequence
equivalence, sequence permutation, and sequence
optimality properties. In addition, we present the-
oretical results providing for a better understand-
ing of the validation process. Finally, we address
the problem of selecting the best validation sequence
among the class of equivalent sequences. We show
that this sequence-optimization problem is NP-hard,
and present two heuristic algorithms for improving
validation-sequence performance.

We not only build the theory behind validation
methods, but also generalize and abstract them. Our
approach is applicable to any data-validation prob-
lem having the following properties: (a) it generates
many data points that cannot be validated individu-
ally; (b) generated data points can belong to differ-
ent categories and need to be classified using several
labels; and (c) the problem is knowledge-intensive
and requires direct involvement of the domain expert
since data-generation methods cannot leverage this
knowledge as well as the domain expert. For example,
personalization applications can generate millions of
rules comprising profiles of individual customers
via data mining, and numerous such rules can be
spurious, obvious, or irrelevant (Adomavicius and
Tuzhilin 2001). Such rules would have to be labeled as
“bad” by the domain expert, separated from the rules
labeled as “good” or “undetermined,” and removed
from user profiles.

In the next section, we present a general approach
to validation that is based on sequences of validation
operators. In the rest of the paper, we develop the
solutions to the sequence-optimization problem.

2. General Validation Problem

Assume that we have a finite set € containing all pos-
sible data points that may need to be validated by
the domain expert. Then a data set D is simply some
subset of all possible data, i.e., D € €. The domain
expert “validates” data set D by assigning labels from
the label set £ ={L,,L,,...,L,} to each input ele-
ment e € D. More formally, the goal of the validation
process is to split the input set D into n + 1 pair-
wise disjoint sets V;, V,, ..., V,, and U, where each V;
represents the subset of D that was labeled with L;,
and U denotes the subset of D that remains unlabeled
after the validation process (i.e., some input elements
may remain unvalidated).

Since D may contain many data elements, it may
not be feasible for the domain expert to validate all
the elements in D manually, i.e.,, by inspecting and
labeling each of them. To make expert-driven valida-
tion feasible, we use validation operators, i.e., methods
that allow the expert to validate multiple elements
of D at a time. This is achieved by letting the domain
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expert specify logical predicates that label a class of
data elements with a particular label.

Formally, let 2 be the set of all possible predicates
for validating input data from €, i.e., % contains all
predicates p of the form

p: € —> {True, False}. (1)

Then, the validation operator is defined as follows.

DEerINITION 1 (VALIDATION OPERATOR). A validation
operator is defined as a tuple (I, p), where [ € £ and
peP.

In other words, for an unvalidated data set D and
an expert-specified validation operator o = (I, p), all
data points e € D for which p(e) = True are labeled
with [ and are considered validated. Data points e € D
for which p(e) = False remain unvalidated. Therefore,
validation is an iterative process, where in each iter-
ation the domain expert can specify a new validation
operator that validates still another portion of yet-
unvalidated parts of D. Thus, the validation process
is a sequence of validation operators.

DEFINITION 2 (VALIDATION SEQUENCE). A sequence
of validation operators is called a validation sequence.
The validation sequence is (0;, 0, ..., 0;), where o0, =
(i, p), ;€ £ and p,; € .

The schematic description of the validation process
is in Figure 1. The following examples describe vali-
dation’s role.

ExamPLE 1 (VALIDATION IN DATABASES). D contains
records in a relational table to be classified into cat-
egories by a domain expert. A table might contain
job candidates, where we must decide whether each
candidate should be extended an offer, called for an
additional interview, or not considered. The labels of
validation operators would correspond to categories
of job candidates (job offer, additional interview,
reject). The predicates would be database queries
issued by the domain expert on the candidate table,
such as “Find the candidates who have excellent
communication skills and who passed their previous
job interviews with ratings of at least 5.”

ExamMPLE 2 (GENERATING LABELS FOR SUPERVISED
LEARNING). To generate labels for supervised-learning

Input data

Validated inputs

e =L,
Ei
o
g
B Expert: p(e) = True
= o=(lp)
=
>
=
= p(e) = False
Figure 1  Expert-Driven Validation Process

algorithms in machine learning, class labels need
to be assigned to the training and testing data by
the domain expert “by hand” in many applications.
This is expensive for large data sets containing many
records. D is the set of training and testing records
(as in Example 1), and & ={L;, L,, ..., L,} is the set
of class labels. The predicates would be the label-
assignment operators specified by the domain expert
using the interactive and iterative assignment process
similar to Adomavicius and Tuzhilin (2001).

ExaMPLE 3 (VALIDATION IN DATA STREAMS). D is a
packet stream going through a router or firewall of
an internet service provider (ISP). An example of a
data-stream processing task is “monitor the amount
of common traffic flowing through four ISP’s routers
over the last ten minutes” (Babu et al. 2004). The net-
work analyst could use this task to monitor network
health and find opportunities for load balancing. Data
streams from the above routers are then processed
(validated) by a sequence of pipelined filters (Babu
et al. 2004), which would correspond to validation
operators in our framework.

Thus, validation problems are general and can be
applied in a variety of applications. However, since
expert-driven validation is important in data mining,
we use mostly data mining examples throughout the
paper.

ExamPLE 4 (VALIDATION IN DATA MINING). D is set
of association rules (Agrawal et al. 1996) about cus-
tomer purchasing behavior, like “people who buy milk
and yogurt, also buy bread,” or milk & yogurt — bread.
The set of labels & is {good, bad}, i.e., the domain
expert wants to label the association rules of inter-
est as “good” and of no interest (e.g., irrelevant or
obvious rules) as “bad.” Since the number of discov-
ered association rules can be very large (Adomavicius
and Tuzhilin 2001, Tuzhilin and Adomavicius 2002), it
may be hard for the domain expert to validate them
all, so some rules are likely to remain unvalidated.

One way to specify validation operators for associ-
ation rules would be template-specification languages
(Klemettinen et al. 1994, Srikant et al. 1997, Imielin-
ski and Virmani 1999, Adomavicius and Tuzhilin 2001,
Tuzhilin and Liu 2002). A rule template takes a set of
rules as an input and returns only those rules that sat-
isfy the template, like those that make inferences about
bread purchasing, i.e., having attribute bread in their
heads (consequents). Using the template specification
language from (Adomavicius and Tuzhilin 2001), this
filter can be specified as the following validation pred-
icate: “HEAD = bread.” Moreover, the expert may be
interested in all such rules and accept them as “inter-
esting” by assigning the label “good” to them. For-
mally, the validation operator is o = (good, “HEAD =
bread”). For example, rule milk & yogurt — bread would
match the above template and, thus, be labeled as
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“good,” whereas bread — butter would not match and
would remain unvalidated.

As another example, to filter the discovered rules
that have milk (possibly among other attributes) in
their bodies (antecedents), one can specify “BODY D
milk.” Again, milk & yogurt — bread would match this
template, and bread — butter would not.

Generating validation sequences in data mining is
described in Adomavicius and Tuzhilin (1999, 2001),
who argue that the domain expert is needed to
drive the validation process. However, a validation
sequence selected by a domain expert may not be
the most efficient one. We focus on the performance-
optimization problem: how to select the most efficient
sequence that is equivalent to the validation sequence
initially specified by a domain expert. This is rele-
vant where we need to re-validate the data periodi-
cally. Since it would be a waste of human resources to
let the domain expert conduct the re-validation pro-
cess every time, we could have the domain expert
validate the data (or a sample) only once and gener-
ate a validation sequence. Subsequent periodic vali-
dations then can be performed automatically using the
sequence initially generated by the expert. Therefore,
we should optimize this initial sequence, the more
efficient version of which could then be automatically
applied in multiple subsequent validations.

3. Sequence-Optimization Problem
In this section, we formalize the sequence-optimiza-
tion problem. We first define the concepts of equiva-
lence and performance measure for validation sequences.
As a result of the validation by sequence s, the
input set D is divided into n+1 pairwise disjoint sets
Vi, V,, ..., V,, and U, where each V; is the subset of D
that was labeled with L;, and U is the subset of D that
remains unlabeled after the validation process. Let
VL(D) := (V}, V,,...,V,) (validated input elements)
and UL (D) := U (unvalidated input elements).

3.1. Equivalence of Validation Sequences
Intuitively, validation sequences are equivalent if they
always produce the same validation results for any
data set to which they are applied; this is formalized
below. € is a finite set of all possible data points that
may need to be validated by the domain expert, and
Dce.

DEFINITION 3 (EQUIVALENT VALIDATION SEQUENCES).
Validation sequences s and s’ are equivalent (write
s~¢') if and only if VI (D) = VI, (D) for every input
Dce.

LemMA 1. s~5 & VI () = VI, (€).

(Proofs of the more important theoretical results are
provided in the Online Supplement to this paper on
the journal’s website.)

The equivalence of validation sequences is a binary
relation R. on the set of all possible validation se-
quences.

LEMMA 2. Relation R is an equivalence relation, i.e.,
R.. is reflexive, symmetric, and transitive.

ExaMPLE 5 (EQUIVALENT VALIDATION SEQUENCES).
Consider validation sequences for association rules
that are expressed using the template specification lan-
guage mentioned in Example 4. Let & = {good, bad},
s = {(good, “HEAD = Bread”), (good, “BODY 2
Milk”)), and s = {(good, “BODY 2> Milk"), (good,
“HEAD = Bread”)). Both sequences have two valida-
tion operators and clearly s # s’ since s’ is a reverse
of s. However, s ~ s/, since both s and s’ will validate
(i.e., will label with good) the same inputs, given any
input data set.

The validation-sequence optimization problem is

s* = arg min cost(s’), ()
s'~s
where cost(s) is some performance measure for vali-
dation sequences. This is a variant of scheduling, i.e.,
we need to rearrange (reschedule) operators in s to
minimize the cost function. We explore this connec-
tion to scheduling in Section 5.4.

To address (2), we should consider how cost(s)
should be defined, how we find sequences equiva-
lent to s, i.e., what the search space of our optimization
problem is, and how we find the optimal sequence
efficiently. That is, even if we can determine all possi-
ble equivalent sequences and calculate the cost func-
tion for each of them, there may be too many of them
and exhaustive search may be impractical.

Note that (2) assumes that the initial sequence is
given and finds some better sequence equivalent to it.
How the initial sequence is generated is beyond the
scope of this paper and has been addressed elsewhere;
e.g., in data mining (Adomavicius and Tuzhilin 2001)
the initial sequence is generated by the domain expert
during post analysis of data mining results.

3.2. Defining the Cost of a Validation Sequence
The time it takes to perform validation would be
one natural way to define the cost of a validation
sequence. However, the cost of validating a sequence
may depend significantly on the input data set. For
example, validation sequence s might be able to val-
idate all of D, with its first operator (i.e., if all ele-
ments of D; match the predicate of the first operator),
so subsequent operators would not even have to be
invoked. On the other hand, the same s might not be
able to validate any elements of data set D,, so all
validation operators would have to be invoked on all
elements of D,.

Therefore, we define the validation-sequence opti-
mization problem for a specific data set D. That is,
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which of the sequences that are equivalent to a given
expert-specified validation sequence s would have
the best performance on data set D? This approach
enables the validation process to be adaptive, i.e., if
the characteristics of data change over time, the vali-
dation sequence can always be dynamically adjusted
(optimized) based on its performance on the latest
portion of D.

Ideally, we would use run time as the performance
measure. While we generally would be able to com-
pute the run time of the expert-specified sequence s
(i.e., during the initial validation process), it obvi-
ously would be difficult to estimate run time of other
sequences theoretically. We overcome this difficulty
with certain simplifying assumptions. In particular,
we assume that it takes a fixed time for a valida-
tion operator o = (I, p) to validate an input element
ee D, ie., to check whether ¢ satisfies predicate p.
In other words, we assume that all predicates are
“similar” in their capabilities and that all individual
predicate/input checks take about the same time. This
assumption is often used in similar situations, e.g.,
Babu et al. (2004) use this assumption to develop algo-
rithms for optimizing the sequence of pipelined fil-
ters for data-stream processing. So our cost function
is the total number of predicate/input satisfaction
checks performed by s to validate input D. Specifi-
cally, assume that sequence s consists of k validation
operators 0;,0,,...,0, and each of the operators o;
validated n; number of elements from D. That is,
operator o, checked all |D| inputs and validated 7, of
them. Subsequently, 0, checked the remaining |D|—n;
inputs and validated n, of them, and so on. Then,
the cost of validating D using sequence s can be
defined as

cost(s, D) = |D| + (D] = m) + (ID| =1y — 1)

k-1
(o)
j=1

k—1
= kID| = Y (k —i)n,. 3)
i=1

Furthermore, let cost(s, D) be the worst possible cost
scenario, when not a single input from D is validated
by s, i.e., all n; =0, so costy(s, D) = k|D|. Define benefit
function as

benefit(s, D) = cost(s, D) — cost(s, D)

k-1
= Z(k_i)”i' 4)

Our optimization problem is thus
s* =argmin cost(s', D) = arg maxbenefit(s’, D).  (5)
s'~s s'~s
How will we search for equivalent sequences? An
important question is: how can we change sequence s

so that the newly obtained sequence s’ remains equiv-
alent to s? Note that the general sequence equiva-
lence specified in Definition 3 constitutes a semantic
concept so it is difficult to find a general solution
to (5) over the space of all equivalent sequences.
This is common in computer science, e.g., consider
finding equivalent schedules of transaction executions
in databases for the purpose of concurrency control
(Bernstein et al. 1987). Equivalence of two schedules
of transactions is a semantic concept that is hard to
verify formally. Therefore, for analytical tractability,
this semantic notion of equivalence was replaced with
a simpler syntactic notion of serializability of a sched-
ule of transactions (Bernstein et al. 1987).

We follow a similar approach and replace the seman-
tic notion of equivalence of validation sequences with
a more restrictive but a simpler syntactic concept of
equivalence between the permutations of some valida-
tion sequence. To illustrate this, consider Example 5,
in which we had two equivalent sequences s and s/,
where s’ was a permutation of s. So given validation
sequence s, we search for the solution to our optimiza-
tion problem among the permutations s' of sequence s
such that s ~s'.

The permutation-based approach allows us to keep
our validation framework very general, since we need
only to examine the positions of the predicates in
the validation sequence. We would not be able to do
this with the semantics-based approach to sequence
equivalence, because it would require taking into
account the complexities of the domain knowledge
pertaining to data and predicates used in each specific
application.

4. Permutation-Based Sequence
Optimization

The permutation-based approach has been used for
optimizing sequences of pipelined filters in data-
stream-processing applications (Babu et al. 2004).
However, Babu et al. (2004) analyze the optimiza-
tion problem where all filters are commutative, i.e.,
any two filters can be switched without any conse-
quences to the correctness of the processing result
(only the processing time may be affected). Such an
approach is not applicable to our case since not all
validation operators are commutative for our vali-
dation problem in general, as will be demonstrated
below. Moreover, unlike Babu et al. (2004), we deal
with a general problem that goes beyond validation
of data streams. Therefore, this problem needs a dif-
ferent permutation-based approach.

4.1. Permutations of Validation Sequences
DEFINITION 4 (SEQUENCE PERMUTATION). Let s and
s’ be validation sequences, i.e., s = (0;,0,,...,0)
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and s = (07,05,...,0,). s 1is called a permuta-
tion of sequence s if and only if {0y, 0,,...,0;} =
{o1,05,...,0.}.

In other words, s’ is a permutation of s if it con-
tains exactly the same validation operators, but not
necessarily in the same order. Let s = {0y, 0,,..., 0)
be a validation sequence and let u be some validation
operator. We will say that s contfains u (and denote
u € s) if there exists x € {1, ..., k} such that u=o,. In
such case we will say that s contains u at a position x
and denote pos,(u) = x.

Let # and v be validation operators contained in the
validation sequence s. Then we will say that u pre-
cedes v in sequence s if pos,(u) < pos,(v) and denote
as u <, 0.

DEerINITION 5 (PERMUTATION DISTANCE). Let s be
a validation sequence (0;,0,,...,0;). Let s’ = (o;,
05,...,0,) be some permutation of s. The distance
between s and s’ is the number of operator inver-
sions between s and ¢/, i.e., the number of all distinct
pairs of validation operators u, v, such that u <, v and
U<y U

dist(s,s'):=|{(u,v): ues, ves, u<,v, v=<yull. (6)

ExamPLE 6 (PERMUTATION DisTANCE). Let s = (o,
0,,05,0,) and s = {05, 0,,04,0;). Then the distance
between s and s is 4, because there are 4 opera-
tor inversions in s’ with respect to s: (03, 0;), (05, 01),
(041 ol)r (03/ 02)'

DEFINITION 6 (SIMPLE PERMUTATION). Let s be a val-
idation sequence, and let s be a permutation of s such
that dist(s, s") = 1. Then ¢’ is called a simple permuta-
tion of s.

Thus, s = (01,05,...,0;) is a simple permuta-
tion of s = (01, 0,,...,0;) if and only if there exists
iefl,..., k—1} such that 0; =0/, and o0,,; =0}, and
for all j (j#i and j#i+1) o;= 0} holds true. More
generally, dist(s, s') is the minimal number of simple
permutations needed to obtain s’ from s.

DEFINITION 7 (SAFE PERMUTATION). Let s be a vali-
dation sequence. Then s’ is a safe permutation of s if
and only if s’ is a permutation of s and s ~s'.

LemMma 3. If §' is a permutation of s, then Ul (D) =
Ul (D) for every input data set D.

4.2. Deriving Equivalence Criteria for
Sequence Permutations

THEOREM 4. Let s = (I, p1), ..., Ik, pr)) and s’ =
(1, p1), -, (I, p)) be validation sequences, where s’ is
a permutation of s. Then s s’ if and only if they contain
a pair of validation operators u=(l,,p,) and v=_(1,, p,)
that satisfy all of the following conditions:

1. u precedes v in s, but v precedes u in s, i.e., u <, v
and v <y u;

2. u and v have different labels, ie., I, #1,;

3. There exists an element e € € such that the Boolean
expression

x—1 y—1

pu(e) Apy(e) A A\ =pi(e) A N\ —pj(e) ?)

i=1 j=1
is true, where x = pos,(u) and y = pos, (v).

Intuitively, s = s’ if and only if there exists a data
element e € € such that e is validated differently by s
and s, and Theorem 4 provides the precise conditions
for this.

ExamMPLE 7 (NONEQUIVALENT VALIDATION SE-
QUENCES). Let s = ((good, “HEAD = Bread”), (bad,
“BODY 2> Milk”)) and let s’ = ((bad, “BODY > Milk”),
(good, “HEAD = Bread”)). Both sequences have two
validation operators and clearly s # s’ since s’ is a
reverse of s. It is easy to see that s and s’ satisfy the
first two conditions of Theorem 4. As for the third
condition, consider rule Milk — Bread. Since this rule
matches both of the predicates in s (and its permuta-
tion s’), sequence s would label this rule as good and s’
would label it as bad. Hence, s < s'.

The following corollary states necessary and suffi-
cient conditions for s ~ s, where s’ is a permutation
of s. It can be straightforwardly derived from Theo-
rem 4 by taking the logical negation of the necessary
and sufficient conditions for s s'.

CoroLLARY 5. Let s={(l;,p1), ..., (k, pr)) and s' =
(1, p0), oo, (I, ..., pe)) be validation sequences, where
s’ is a permutation of s. Then s~ s’ if and only if every
possible pair of validation operators u = (l,,p,) and v =
(I, p,) (ie., ues, ves, uswv) satisfies at least one of:

1. Either u precedes v in both s and s', or v precedes u
in both s and ¢/;

2. u and v have the same label, ie., I, =1;

3. For all possible input elements e € €,

y—1

S ARV VROV ®)

i=1 j=1
is true, where x = pos,(u) and y = pos, (v).

Finally, the following corollary states necessary and
sufficient conditions for s ~s', where s’ is a simple per-
mutation of s. It follows immediately from Corollary 5
by restricting s’ to be a simple permutation of s.

COROLLARY 6. Let s = (0y,...,0,) be a wvalidation
sequence where o; = (I;, p;), and let s' = (0}, ..., 0;) be a
simple permutation of s. Le., (Ax e {l,..., k—1}) ((o, =
0, 1) A (01 =0))), and also 0, =o; forall i e {1, ..., k}
such that i #x and i #x+ 1. Then s ~ s’ if and only if
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at least one of the following conditions is satisfied:
1. o, and o, have the same label, ie., . =1, ;
2. For all possible input elements e € €,

() APV V 1) ©)
is true.

The practical implication of the first condition is
clear: whenever we switch any two adjacent opera-
tors in a validation sequence (i.e., perform a simple
permutation), the new sequence is equivalent to the
initial one if the labels of the inverted operators are
the same. It is somewhat more difficult to derive the
precise practical implications of the second condition,
and we will discuss this later.

4.3. “Connectedness” of Equivalent Sequence
Permutations

In this section, we prove several facts that provide

understanding about the structure of the “space” of

equivalent validation sequence permutations.

LeMMA 7. Let s = {0y, 0,,...,0;) be a validation se-
quence. Let s’ be some permutation of s. Then, for every
pair of validation operators o; and o; such that o; <, o; (i.e.,
i <j), but 0; <, o;, there exists x such that i <x <j—1
and 0,4 <y Oy.

The following theorem is the main result about the
space of all equivalent permutations.

THEOREM 8. Let s =0y, 0,, ..., 0;) be a validation se-
quence. Let s’ be some safe permutation of s such that
dist(s, s') = d, where d > 1. Then there exists a sequence s”
that is a safe simple permutation of s, such that s’ ~ s” and
dist(s',s")=d — 1.

This theorem states that, if s ~ s/, where s is
a permutation of s and dist(s,s’) = d, then there
always exists an “intermediate” equivalent validation
sequence s” that is a simple permutation of s, ie.,
s” is equivalent to both s and s', dist(s,s”) =1, and
dist(s',s")=d — 1.

By applying the above theorem repeatedly, it is easy
to demonstrate the “connectedness” of all equivalent
validation sequences via their equivalent simple per-
mutations, as stated by the following theorem.

THEOREM 9. Let s = (0y,0,,...,0,) be a validation
sequence. Let s' be some permutation of s such that
dist(s,s') = d, where d > 1. Then, s ~ 5" if and only if
there exist d + 1 validation sequences sy, s, ..., S;, Such
that s, =s, s, =5, and s; is a safe simple permutation of
s;i_q foreveryi=1,...,d.

The above results give us a better understanding
about equivalent permutations of a given validation
sequence s. We can visualize the space of all permuta-
tions of s by constructing a permutation graph, where
each vertex corresponds to a different permutation
of s. Furthermore, in this graph, two vertices will have

Distance from s,

0
1
1423 2
A
3
\4 132 4
............................... w0
6

Figure 2 Permutation Graph of a Validation Sequence

an edge connecting them if one of them is a simple
permutation of the other. An example of such a graph
for a sequence consisting of four validation operators
is in Figure 2.

Obviously, any two permutations are connected by
a path (in fact, multiple paths) in this permutation
graph. Theorem 9 states that if permutations s, and s,
are equivalent, there exists a minimal path from s,
to s, that goes only through “intermediate” permu-
tations that are equivalent to s; and s,. Furthermore,
not only does such a path exist, but it is also mini-
mal, i.e., its length (number of edges comprising the
path) is always equal to the permutation distance
between s; and s,. To illustrate this, assume that s, :=
(01, 0,,05,0,), and let s, be a permutation of s; such
that s, := (0,4, 05, 0;, 0,). Then the distance between s,
and s, is 5, since there are 5 operator inversions in s,
with respect to s;, i.e., (04, 05), (04, 05), (04, 01), (03, 0,),
(03, 01). Figure 2 highlights all the paths of length 5
between s, and s,.

Theorem 9 identifies a “search space” of equiva-
lent validation sequence permutations, and we can
use this in solving our sequence-optimization prob-
lem. Assume that we have an expert-specified vali-
dation sequence s, and that we have a cost function
defined for each permutation of s (we will address
this issue later). Then, we could search for the opti-
mal permutation by traversing the permutation graph
(such as depicted in Figure 2) by doing only safe sim-
ple permutations, starting from vertex s. Theorem 9
guarantees that we will encounter the optimal permu-
tation s* along the way.

We could use various graph-traversal techniques,
such as depth-first or breadth-first search. However,
if the validation sequence s has k validation opera-
tors, then the number of possible permutations is k! so
exhaustive search techniques are not scalable. On the
other hand, the largest possible distance between
two permutations is (k —1)+(k—-2)+---+2+1=
k(k—1)/2 (i.e., the largest possible number of inver-
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sions between two permutations — where every pair
of operators is inverted). Therefore, by Theorem 9,
there exists a path between the expert-specified val-
idation sequence s and the optimal sequence s* that
is not longer than k(k — 1)/2. Consequently, based on
the specific cost function, we would like to find a
greedy algorithm that allows us to choose the right
path without traversing the whole graph.

One obstacle with this approach is that we must be
able to determine whether a given simple permutation
is safe. Corollary 6 gives us two conditions — at least
one of them has to be met by a simple permutation
in order for it to be safe. Let s = (0;,...,0,) be a
validation sequence where o; = (I;, p;), and let s’ =
(0},...,0;) be a simple permutation of s. That is,
Axef{l,...,k—=1}) ((0, = 0p4q) A (0,47 = 0;)), and
also o, =0, for all i € {1,...,k} such that i #x and
i#x+1. As mentioned earlier, the first condition of
Corollary 6, I, =1, is easily verifiable. The second
condition, i.e., whether

x—1
~(p(e) Apaa (@) vV \ pie)
i=1
holds for all possible inputs e € €, depends on the
semantics of predicates and in general may not be
easily solvable analytically.

We will show later that even when we restrict the
validation-sequence optimization problem, it remains
computationally complex. More specifically, to study
complexity of the validation-sequence optimization
problem and further understand the structure of the
space of the equivalent validation sequence permuta-
tions, we introduce in Section 5 the concepts of strong
and very strong equivalence of sequence permutations
and study their properties. We later show that the
optimization problem stated above, and even several
of its special cases, are NP-hard.

5. Computational Complexity of the
Validation-Sequence Optimization

Problem

In this section we consider two special classes of
equivalent validation sequence permutations based on
the concept of orthogonality of predicates. We call them
strongly and very strongly equivalent permutations and
explore their theoretical properties. Moreover, we use
the class of very strongly equivalent permutations to
restrict our sequence-optimization problem and show
that this restricted optimization problem is NP-hard,
so the general optimization problem is NP-hard as
well. Furthermore, we use the class of strongly equiv-
alent validation sequence permutations in heuristic
algorithms for validation-sequence improvement.

5.1. Predicate Orthogonality
DEerINITION 8 (PREDICATE ORTHOGONALITY). Predi-
cates p and g are orthogonal if their conjunction is not

satisfiable, i.e., if (Ve € €) (—=(p(e) Aq(e))). If p and g
are orthogonal, write p L g (and p } g otherwise).

Thus, two predicates are orthogonal if they can
never match the same input element.

ExaMPLE 8 (ORTHOGONAL PREDICATES). According
to the rule-template specification language proposed
by Adomavicius and Tuzhilin (2001), templates
“HEAD = bread” and “HEAD = milk” clearly would
never match the same association rule, so predicates
“HEAD = bread” and “HEAD = milk” are orthogonal.

ExamMPLE 9 (NONORTHOGONAL PREDICATES). Tem-
plates “HEAD = bread” and “BODY 2 milk” would both
match association rule milk — bread. Hence, “"HEAD =
bread” and “BODY 2 milk” are not orthogonal.

Lemma 10. (VpeP) (p L —p).

Predicate orthogonality can be viewed as a binary
relation R | on the set of all predicates. R, has the prop-
erties specified in the following lemma. (These are the
properties that one may intuitively expect an orthog-
onality relation to have, e.g., orthogonality relation on
the set of straight lines on the plane has the same prop-
erties.) The orthogonality conditions for predicate con-
junctions and disjunctions are also stated below.

LemMma 11. Binary relation R, is symmetric, but nei-
ther reflexive nor transitive.

LemMma 12. Let py, ..., p,, and q be predicates. Let p :=
PiA- - APy If there exists i € {1, ..., m} such that p; L g,
then p L q.

LemwMma 13. Let py, ..., p,, and q be predicates. Let p :=
p1V---Vp,. Then p L qif and only if Vie{l,...,m})
(i L a).

5.2. Strongly Equivalent Permutations

DEFINITION 9 (STRONGLY EQUIVALENT PERMU-
TATION). Let s = ((I,p1), ..., (k,pr)) and s =
(1, p0), .., (., p.)) be validation sequences, where
s’ is a permutation of s. s’ is said to be a strongly equiv-
alent permutation of s (write s & s) if and only if every
possible pair of validation operators u = (I, p,) and
v=(l,,p,) (ie., ues, ves, uz#v) satisties at least one
of the following:

1. Either u precedes v in both s and s, or v pre-
cedes u in both s and s’;

2. u and v have the same label, ie., [, =1,;

3. p, and p, are orthogonal, i.e., p, L p,.

This definition mirrors the necessary and sufficient
conditions for sequence equivalence (Corollary 5),
except that the third condition is strengthened here
(hence the term “strong equivalence”).

LEMMA 14. s~ = s~

ExamPLE 10 (STRONGLY EQUIVALENT PERMUTATIONS).
Consider validation sequences from Example 5, i.e.,
s={(good, “HEAD = Bread"), (good, “BODY 2 Milk"))
and its permutation s = ((good, “BODY > Milk”),
(good, “HEAD = Bread”)). According to Definition 9,
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we have that s = s, since the permuted validation
operators have the same label, i.e., “good.”

Strong equivalence of validation-sequence permu-
tations can be viewed as a binary relation R, on the
set of all possible permutations of a given validation
sequence.

LemmMa 15. R, is an equivalence relation: it is reflexive,
symmetric, and transitive.

Also, for strongly equivalent sequence permuta-
tions there exist necessary and sufficient conditions as
well as “connectedness” results that are very similar
to the corresponding results for equivalent permuta-
tions (i.e., Corollary 6 and Theorem 9).

THEOREM 16. Let s = {0y,...,0,) be a wvalidation
sequence where o; = (I;, p;), and let s = oy,...,0;) be
a simple permutation of s. Le., Ax € {1,...,k — 1})
((0, =0\ 1) A0y =0)), and also o; = o for all i e
{1,...,k} such that i#x and i #x+1.

Then s~ s’ if and only if at least one of the following is
satisfied:

1. o, and o, have the same label, i.e., . =1, ;

2. px J-px-o—l'

THEOREM 17. Let s = {0, 0,,...,0,) be a wvalidation
sequence. Let s' be a permutation of s such that dist(s, s') =
d > 1. Then s~ s if and only if there exist d + 1 validation
sequences Sy, Sy, ..., Sy, such that sy=s, s, =5, and s; is
a strongly equivalent simple permutation of s;_, for every
i=1,...,d.

Now that we have defined the notion of strong
equivalence for validation-sequence permutations, we
can formulate the following special case of our valida-
tion-sequence optimization problem (i.e., a restriction
of the search space to very strongly equivalent per-
mutations):

s* = argmin cost(s', D) = arg max benefit(s', D)
s/~ s'~s
k-1
= argmax y_(k —i)n. (10)
s'~s i=1

We know the number of data points n; from D val-
idated by each validation operator o; in the initial
sequence s. However, the corresponding values n; for
validation operators o; in s’ are different from the n;
for strongly equivalent sequences s’ in (10) in general.
Since we do not know the n values, this makes it
difficult to solve the problem (10).

In the next section, we will consider a more re-
stricted version of strong equivalence—very strong
equivalence—that guarantees that the set of values
{n}} is always the same as {n;} for very strongly
equivalent sequence permutations. This will be useful
for determining the computational complexity of the
optimization problem for that class of sequences and,
consequently, for optimization problems (10) and (5).

5.3. Very Strongly Equivalent Permutations

We restrict the class of strongly equivalent permu-
tations even further and introduce the class of very
strongly equivalent permutations. We use this new class
to prove NP-hardness of the restricted optimization
problem and, consequently, NP-hardness of the gen-
eral optimization problem (5).

DeriniTION 10 (VERY STRONGLY EQUIVALENT PER-
MUTATION). Let s = ((I;,py), ..., (,p)) and s =
(13, p), ..., (I, p.)) be validation sequences, where s’
is a permutation of s. s’ is said to be a very strongly
equivalent permutation of s (write s = ¢') if and only if
every possible pair of validation operators u = (1, p,)
and v=(I,, p,) (e, u€s, v es, u+#v) satisfies at least
one of the following;:

1. Either u precedes v in both s and s/, or v pre-
cedes u in both s and s’;

2' pll J_ pU'

This essentially mirrors the definition of strongly
equivalent permutations (Definition 9), except the sec-
ond condition (I, =1,) is omitted here.

ExamMPLE 11 (VERY STRONGLY EQUIVALENT PERMU-
TATIONS). Consider validation sequence s = ((good,
“HEAD = bread”), (good, “THEAD = milk”)) and its
permutation s = ((good, “HEAD = milk”), (good,
“HEAD = bread”)). Then s = s’ because the predi-
cates of permuted validation operators are orthogonal
according to Example 8.

ExamPLE 12 (Not VERY STRONGLY EQUIVALENT
PeErRMUTATIONS). Consider validation sequence s =
{(good, “HEAD = bread”), (good, “BODY 2> milk”))
and its permutation s’ = ((good, “BODY > Milk”),
(good, “HEAD = Bread”)). Then s # s' because the
predicates of permuted operators are not orthogonal,
according to Example 9.

LEMMA 18. s=s = s~

Very strong equivalence is a true equivalence rela-
tion, and the necessary and sufficient conditions as
well as the “connectedness” results for very strongly
equivalent permutations can also be obtained.

Let s’ be a very strongly equivalent permutation
of s and consider an arbitrary operator o; € s, ie.,
pos,(0;) = i. Also, assume that in the permuted
sequence s, 0; would be at some position j, i.e., 0; = 0]
or posy(0;) = j, and that o; validated n; data points
from data set D. Then o; will also validate n; points
in s’ while being at position j.

LeMMA 19. Let s = {0y,...,0,) be a wvalidation se-
quence and let ny, ..., n; be the numbers of data points
validated by each of the validation operators in s, given
some data set D. Let s' = (o, ..., 0,) be a very strongly
equivalent permutation of s (i.e., s=s') and let ny, ..., n;
be the numbers of data points validated by each of the vali-
dation operators in s', given the same data set D. Then for
every i€ {1, ..., k}: n;=n; where j = pos,(0;).
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Further restrict (10) to

s* = arg max benefit(s', D). (11)

In the next section, we show that this problem is
NP-hard.

5.4. NP-Hardness of the Optimization Problem for

Very Strongly Equivalent Permutations
Given validation sequence s = (o, ..., 0;) and some
permutation s’, Definition 10 specifies alternative con-
ditions to be satisfied by every pair of validation oper-
ators u € s and v € s, in order for s=s'. We will show
that these conditions are equivalent to specifying a
certain partial order on the set of validation opera-
tors in s.

5.4.1. Precedence Graph of Validation Operators.
Let G, = (V,E) be a directed acyclic graph with k
vertices, where each vertex i € V is associated with
a different validation operator o; (i € {1, ..., k}). Fur-
thermore, the set E of edges is defined as follows. For
every pair of validation operators o; = (I;, p;) and o; =
(I;, p;) such that o; <, 0; (ie., i <), add an edge from
vertex i to vertex j to set E if p; L p;. We will call this
graph a precedence graph of sequence s.

If precedence graph G, has an edge from i to j,
then any permutation s’ that is very strongly equiva-
lent to s must have o; <, o;. If that were not the case,
i.e., if there existed a very strongly equivalent per-
mutation s such that o; <, 0;, then we would derive
a contradiction, since validation operators o; and o;
would not satisfy either of the two conditions from
Definition 10 and it would imply that s %'

G, represents a partial order over the set of vali-
dation operators o;, ..., 0. As shown above, those
permutations of s that satisfy this partial order are
very strongly equivalent to s, and the ones that do
not satisfy this order are not very strongly equiva-
lent to s. Also, since we have not placed any restric-
tions on what kind of predicates can be used in val-
idation operators, the resulting precedence graph in
general can represent any partial order. Therefore,
we transform the restricted sequence optimization

problem
k-1

s* =argmax »_(k —i)n;
s'=s i=1
into the following validation operator scheduling

problem:
k-1

s* =argmax Y _(k—i)n, (12)
s’ satisfies Gy j=1
where 1, =n,, if pos, (0,) =i (according to Lemma 19).
In other words, the problem is to find a “scheduling”
of operators oy, ..., 0, such that it obeys the prece-
dence graph G, and the corresponding permutation
{n;} of {n;} maximizes the benefit function.

Assume that we can efficiently compute whether
two predicates are orthogonal, i.e., given validation
sequence s, we can efficiently construct precedence
graph G,.

THEOREM 20. Optimization problem (12) is NP-hard.

Proof is based on the fact that solving the scheduling
problem (12) is equivalent to solving the “task sequenc-
ing on a single processor to minimize weighted com-
pletion time,” a known NP-hard problem (Garey and
Johnson 1979); see the Online Supplement to this
paper on the journal’s website. NP-hardness of the
validation-sequence optimization problems (5), (10),
and (11) stated throughout the paper follows immedi-
ately from Theorem 20, equivalence of problems (11)
and (12), and Lemmas 14 and 18.

5.4.2. Validation as Scheduling. Besides demon-
strating that the validation-sequence optimization
process is NP-hard, the above analysis also shows
that our optimization process can be viewed as a cer-
tain type of scheduling. To illustrate this point fur-
ther, consider the following analogy to be used sub-
sequently for drawing connections to the scheduling
problem.

Consider a factory that produces items of a cer-
tain kind. After items are manufactured, they must
be sorted by quality, e.g., excellent, good, medium, or
bad (in general, the number of degrees of quality is
arbitrary), and are placed on a moving conveyor for
final inspection. A group of inspection robots is stand-
ing along the side of the conveyor, and each robot
inspects each passing item for a particular property.
For example, robot R; only knows that all the “defec-
tive” items should be labeled as bad, robot R, only
knows that all “small” and “green” items should be
labeled as good, robot R; only knows that all “big”
and “red” items should be labeled as medium, and so
on. If the item matches the inspection criteria for a
robot, it is removed from the conveyor by that robot
and placed into an appropriate container, otherwise it
stays on the conveyor and moves to the next robot.

Inspection of a single item by a single robot costs c,
so the problem is to arrange the robots alongside the
conveyor to minimize the total inspection cost. One
way to solve this problem is to put robots that “cap-
ture” more items at the beginning of the conveyor.

ExamMPLE 13 (VALIDATION AS SCHEDULING). Sup-
pose three robots are initially arranged R;, R,, Rj.
After the first 1,000 inspections, R, labeled 20 (out of
1,000 items), R, labeled 20 (out of the remaining 980
items), and R; labeled 400 (out of the remaining 960
items). The total cost in this case is 2,940 inspections.
However, if the sequence had been R;, R;, R,, then
R, again would have labeled 20 (out of 1,000 items),
R; would have labeled 400 (out of remaining 980),
and R, would have labeled 20 (out of remaining 580).
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The total cost in this case would be 2,560 inspections,
a significant improvement.

With respect to validation optimization, the items
on the conveyor represent the data points to be vali-
dated, the sequence of robots represents the sequence
of validation operators, and the total inspection cost
represents our validation cost function. Moreover,
various rearrangements of robots along the conveyor
belt represent various permutations of validation
operators. Not all robot rearrangements are possible.
In Example 13 we could switch robots R, and R;,
because they represent orthogonal validation opera-
tors, i.e.,, no item can be both “small/green” and
“big/red” at the same time. However, we could not
have switched R; and R,, because an item can be
“small/green” and “defective” at the same time. Such
an item would be labeled differently than in the orig-
inal sequence, producing an incorrect outcome.

Our validation problem can be formulated as a schedul-
ing problem: given a set of validation operators
{01,0,,..., 0.} schedule them in a sequence s’ so that
(a) s" is equivalent to the original sequence s specified
exogenously (e.g., by the domain expert), and (b) its
cost on some representative data set D, cost(s’, D),
is minimal among all the equivalent sequences. This
problem constitutes a nontraditional scheduling prob-
lem for the following reasons. First, it depends on the
concept of equivalence between two sequences that
we define differently from scheduling theory. Second,
the cost structure (3) and (4) is such that the cost of
each validation operator o; contributing to the total
validation cost not only depends highly on the position
of 0; in the validation sequence, but also on its relative
position with respect to other validation operators.
This is also a nonstandard assumption in scheduling.
For these reasons, we could not apply standard meth-
ods from scheduling to solve our problem. Instead,
we used our theoretical results in the algorithms pre-
sented below.

6. Heuristics for Validation Sequence

Improvement

In Section 5 we showed that, given validation
sequence s, the problem of finding the optimal
sequence among all the sequences that are very
strongly equivalent to s is NP-hard. This problem is
already NP-hard without even taking into account
computation of the precedence graph G,. For the
task-scheduling problem, described in Section 5.4, the
precedence graph is given (i.e., it is part of the input).
However, in our problem, we have to calculate the
precedence graph ourselves. In other words, we have
to be able to calculate which pairs of operators must
preserve their precedence in the permuted sequence,
based on orthogonality of their predicates.

Therefore, the precedence-graph calculation de-
pends on the class of predicates used in validation
operators. If the predicates are complex, it may be
very difficult (or impossible) to show whether two
given predicates are orthogonal. Since the problem
is NP-hard even when the graph is already given,
we present two general (ie., independent of the
class of predicates used) heuristic-based approaches
to improving the validation sequence when a prece-
dence graph G, is given as an input.

6.1. Precedence Graph for Strongly Equivalent
Permutations

To prove NP-hardness of the optimization problem,
we showed earlier how to construct the precedence
graph based on very strong equivalence constraints. For
our heuristic approaches, we construct the precedence
graph based on less restrictive equivalence—strong
equivalence—constraints. In this scenario, our heuris-
tics will potentially have a much larger search space
to work with and so may generate permutations with
better performance improvements.

Given validation sequence s = {0y, ..., 0;) and some
its permutation s’, Definition 9 specifies several condi-
tions that must be satisfied by every pair of validation
operators 1 € s and v € s so that s ~ s’. We show that
these conditions are equivalent to specifying a certain
partial order on the set of validation operators in s.

More specifically, let G, = (V,E) be a directed
acyclic graph with k vertices, where each vertex i € V
is associated with a different validation operator o;
(i € {1,...,k}). Furthermore, the set E of edges is
defined as follows. For every pair of validation oper-
ators o; = (;, p;) and o; = (I;, p;) such that o; <, 0; (i.e.,
i <), add an edge from vertex i to vertex j to set E if
both I; #1; and p; L p;.

If G, has an edge from i to j, then any per-
mutation s’ that is strongly equivalent to s must
have o; <, o;. If that were not the case, i.e., if there
existed a strongly equivalent permutation s’ such that
0; <g 0; then we would derive a contradiction, since
validation operators o; and o; would not satisfy all
three conditions from Definition 9 and it would imply
that s %s'.

6.2. Sequence Improvement Using
a Simple Permutation
Let the improvement of sequence s’ over sequence s be

A,y :=cost(s, D) —cost(s', D). (13)
Based on cost and benefit functions (3) and (4),
A,_ . = benefit(s', D) — benefit(s, D), (14)

Let s = (o;,...,0,) be a validation sequence and
G be a precedence graph based on s. Also, let s’ =
(0},...,0;) be a simple permutation of s, ie., (Ilx €
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{1,...,k =1}) ((0, = 041) A (0,47 = 0})), and also
o, =0; for all i € {1,...,k} such that i # x and i #
x 4 1. Assume that there is no precedence constraint
between operators o, and o,,, i.e., there is no edge
from o, to o,,; in G. Therefore, s ~s'. Consequently,
s~ s and therefore s’ will produce the same valida-
tion results as s. What is the cost of s’ (or the value of
A, ,,)? To answer this, we estimate n/, i.e., the num-
ber of data points from data set D that each validation
operator o] (from permuted sequence) would validate.

THEOREM 21. Let s' be a simple permutation of s,
obtained by swapping two adjacent validation operators o,
and o,,q. Then A, ,, >n, 4 —n,.

Therefore, whenever we perform a simple permu-
tation that is permissible (i.e., allowed by the prece-
dence graph), we are guaranteed to decrease the cost
(or increase the benefit) of the validation sequence by

at least n, ; —n,.

6.3. Greedy Heuristic Based on Simple
Permutations

Our heuristic algorithm for improving validation se-
quences relies in part on the ability to calculate
predicate orthogonality. Assume s = (0;,...,0;) is an
expert-specified validation sequence that was used to
validate data set D, and let n; be the number of ele-
ments validated by operator o;, where i € {1, ..., k}.
We will construct an improved validation sequence
s =(0y,...,0,) where o; = (I}, p;) as a permutation
of s. In the beginning, let 0} := 0; and n} = n; for each i.
Then construction of s’ can be described as follows:

(1) done :=False; Ay, :=0;

(2) while —done

@) S={1=<i<k-1[Li=lVvpLpi}
(4) if S=o then done :=True

(5) else x :=argmax;_s(1n;,, —1n})

6) A=, 1

(7) if A, <0 then done :=True

(8) else ATotal = ATotal + Ax

)] swap o, and 0, in the validation
sequence s'
(10) swap values of n, and 7/,
(11) end if
(12) end if

(13) end while

The intuition behind this algorithm is that in every
iteration of the algorithm (lines 3-12), given the cur-
rent sequence s/, in a greedy fashion we choose to
make a simple permutation of s’ that remains equiva-
lent to s'. That is, we consider only those pairs of adja-
cent operators 0; and o;,, that either have identical
labels or their predicates are orthogonal (line 3). Based
on Definition 9, by swapping these two operators we
would produce an equivalent permutation. Further-
more, in each iteration, among all available equivalent

simple permutations we choose the one that maxi-
mizes the improvement of the sequence performance
(line 5). The simple permutations (lines 9-10) continue
in this greedy fashion until there is no incremen-
tal improvement to the sequence performance (deter-
mined at line 7).

While the greedy heuristic is not guaranteed to give
us an optimal solution to the sequence-optimization
problem, it can be shown that

As—>s’ = ATotal/ (15)

where Ay, is calculated by the above heuristic algo-
rithm. More precisely,

Aot = > (”j — ). (16)

i: (0;=507)A(0j<¢ 0;)

To show that A, ,, > Ap,,;, one can easily extend the
argument from Section 6.2, which showed that A, ,, >
1.1 — N, for simple strongly equivalent permutations.
Furthermore, based on the results from Section 6.2, we
have that the above lower bound is tight, i.e,, A, =
Ay, When all simple permutations performed by
the above heuristic involved pairs of operators with
orthogonal predicates (i.e., all permutations are very
strongly equivalent).

ExamPLE 14 (VALIDATION SEQUENCE IMPROVEMENT).
Consider validation sequence s = (0, 0,, 0;). Assume
that this sequence was used to validate data set D
consisting of 1,000 data elements, and that o, val-
idated 150 (n,;), o, validated 100 (n,), and o, val-
idated 750 (n;) of them. Thus, cost(s, D) = 1,000 +
850+ 750 =2,600. Also assume that our heuristic pro-
duced the equivalent permutation s’ = (o3, 0;, 0,) by
first swapping operators 0, and o5, and then o, and o;.
According to the greedy heuristic, Ag,,; = (13 — n,) +
(ny—ny) = (750 —100) + (750 — 150) = 1,250. Therefore,
based on the lower-bound result, we are guaranteed
to have cost(s’, D) < 1,350, i.e., the cost was cut nearly
in half.

The heuristic traverses the permutation graph (e.g.,
Figure 2) by doing one equivalent simple permutation
at a time, starting from vertex s. Since at every iteration
we perform an equivalent simple permutation, the
sequence s’ produced by the above heuristic remains
equivalent to the original sequence s (because of the
transitivity of the equivalence relation). In addition,
note that on every iteration we perform a simple per-
mutation only if A, > 0. Because of this, we are guar-
anteed not to swap the same two validation operators
more than once. Therefore, the maximal number of
iterations performed by the above heuristic is equal to
the number of possible validation-operator inversions,
i.e., k(k—1)/2 (assuming the validation sequence has k
operators). However, k(k —1)/2 iterations are possible
only when all simple permutations are permissible,
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which is a worst-case scenario that is far from realis-
tic, e.g., in many data-mining validation scenarios, the
number of permissible permutations typically is O(k)
because of the predicate nonorthogonality between
numerous pairs of operators that have different labels.
Moreover, since computational complexity of a sin-
gle iteration is O(k), i.e., dealing with k — 1 pairs of
adjacent operators, the worst-case computational com-
plexity of the heuristic is O(k®) with the typical real-
life complexity being much lower, i.e., O(kz), as men-
tioned earlier. This is a significant improvement over
the exhaustive search-based techniques that consider
all validation-sequence permutations and has worst-
case computational complexity of O(k!).

6.4. Performance of the Greedy Heuristic

Since the sequence optimization problem is NP-hard,
the greedy heuristic is not guaranteed always to pro-
duce the optimal validation sequence because it has
only polynomial computational complexity. There-
fore, it is important to understand how well the pro-
posed heuristic typically performs.

Unfortunately, theoretical analysis of the heuristic
performance is a difficult problem, because perfor-
mance of the heuristic depends significantly on its
inputs, i.e., on the specific data set to be validated
and on the initial validation sequence specified by
the domain expert. In other words, given validation
sequence s, the heuristic may be able to find an opti-
mal permutation on one input data set, but would
produce a highly suboptimal permutation if a differ-
ent data set is given. Conversely, given data set D, the
heuristic would be able to find the optimal permuta-
tion for one expert-specified sequence on D, but may
produce only a suboptimal permutation for a differ-
ent sequence.

ExampLE 15 (OpTiMALITY OF HEURISTIC RESULTS:
DEPENDENCE ON INPUTS). In Example 13, consider the
set of only two robots: robot R, labels all “red” items
as good and robot R, labels all “small” items as good.
Since both robots use the same label, permutations
s1, = (Ry, R,) and s, = (R,, R,) are equivalent (even
strongly equivalent). In general, the optimal sequence
depends on the input data set: If we manufacture
more “red” than “small” items, then s;, is optimal,
otherwise s,, is optimal. Furthermore, assume that s,,
is the initial expert-specified sequence of robots and
consider the input data set D of 100 items: 20 items
are “red” and “small,” 70 are “green/small,” and 10
are “green/big.” Obviously, R, will validate 20 of the
100 items (n; = 20) and R, will validate 70 of the
remaining 80 items (11, = 70). Based on this informa-
tion (1, < n,) the heuristic would swap R,; and R, and
would produce the optimal result in this case, since
cost(s5, D) = 100 + 80 = 180 and cost(s,;, D) = 100 +
10 = 110. Alternatively, assume data set D consists
of 100 items: 40 items are “red” and “small,” 30 are

“green/small,” and 30 are “green/big.” Obviously, R,
will validate 40 of the 100 items (1; =40) and R, will
validate 30 of the remaining 60 items (1, = 30). Based
on this information (n; > n,) the heuristic would not
swap R; and R,. However, the optimal result would
not be produced in this case, since cost(s;,, D) =100+
60 =160 and cost(s,;, D) = 100 + 30 = 130.

So it may not be possible to find any closed-
form solutions describing the heuristic performance
without understanding the specifics of the domain
knowledge—the underlying data and the validation
predicates, e.g., in Example 15 the understanding of
the “overlap” between “small” and “red” items was
more crucial than knowing the performance 7, and n,
of individual validation operators.

For the same reasons, i.e., because of the depen-
dence of heuristic performance on the domain-specific
information, it is difficult to produce not only the-
oretical, but also simulation-based results about the
performance of the heuristic, unless we choose to
make oversimplifying or hugely restrictive assump-
tions, e.g., restrict the input data and validation predi-
cates to be of some very limited types. Since our focus
is on the general validation problem, we plan to pur-
sue the domain-specific validation issues in our future
research.

However, as discussed in Section 6.3, the pro-
posed heuristic provides some theoretical guarantees.
As (15) and (16) indicate, the performance improve-
ment A, from the initial expert-specified sequence
is guaranteed to be at least

Z (”j —1;). 17)

i:(0;<507)A(0j<4 0;)

In other words, the heuristic is always able to present
feedback regarding the guaranteed cost savings it pro-
duces, based only on its knowledge of initial sequence
performance (i.e., n; values).

While the greedy heuristic is not guaranteed to pro-
duce optimal results in all cases, it can generate opti-
mal validation sequences in some circumstances. The
most obvious example is when all simple permuta-
tions are very strongly equivalent, e.g., when all the
predicates are pairwise orthogonal, as follows from
the results in Section 6.2. In such cases, the heuris-
tic would be able simply to sort the operators o; in
the descending order based on the number #; of data
points that each of the operators has validated.

Since the heuristic does not guarantee optimality,
it is important to understand some of its worst-case
scenarios, even without taking the domain specifics
into account. Figure 3 illustrates one such scenario.
s has six validation operators, and each can label the
appropriate input with an A or B label. Assume that
all predicates are pairwise orthogonal except for ps
and p,, i.e., ps £ ps. The numbers n; of data points (out
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i Pi I; n; i vi [ 1;

1 12 A 2 1 Ps A 1

. .. 2 Pe B 1,000

4 1A A 2 3 P A 2

5 Ps A 1 . .

6 Pe B 1,000 6 Ps A 2

(a) Initial sequence (s) (b) Optimal sequence (s')

cost(s, D) = 6,025 cost(s', D) =2,037

Figure 3 “Problematic” Example

of 1,009 total data points) validated by each operator
are also provided in Figure 3(a).

Based on our definition of sequence cost, the cost
of s is 6,025. The greedy heuristic would not perform
any changes to the sequence because n;,, —n; <0 for
every permissible simple permutation in s. Note that
it is not permissible to swap operators 5 and 6, since
neither I5 = I nor ps L p,. However, if we do not fol-
low the greedy approach and move operator 5 all
the way up (because p; is orthogonal to p;, ..., ps),
we can move operator 6 up to the second position
in the sequence (again, because p, is orthogonal to
Pi,--.,Ps), obtaining sequence s’ (presented in Fig-
ure 3(b)) that is still equivalent to s, but significantly
less costly. Specifically, the cost of s’ is 2,037. There-
fore, the greedy heuristic does not provide any per-
formance improvements in this “worst-case” scenario,
whereas an optimal solution improved performance
by 3,988 operations (cost reduction of 66.2%).

Worst-case validation sequences, as shown in Fig-
ure 3(a), do not occur frequently. As was argued by
Adomavicius and Tuzhilin (2001), if possible, domain
experts usually try to specify more general validation
operators validating large amounts of data first (e.g.,
more general rule filters in data-mining applications),
and the more specific operators later. It is not typical
to specify many very specific validation operators (i.e.,
pi,--.,ps) before applying a very strong and general
one (i.e., pg). The heuristic would be able to find the
optimal sequence (s') in the above example if we had
ns =3 (instead of ny; = 1). Clearly, the heuristic algo-
rithm can be improved so that it can detect some of the
“problematic” situations at the expense of increasing
computational complexity of sequence optimization.
In Section 6.5 we provide a better (but more complex)
heuristic based on dynamic programming.

Finally, to illustrate performance of the greedy ap-
proach more comprehensively, we applied it to a
large-scale realistic data stream. In particular, we gen-
erated a data stream of 1,000,000 records, each con-
taining the values of ten different attributes (4, ...,
Ayy) generated randomly based on ten predefined
probability distributions (one for each attribute). Then
we specified eight validation operators using labels
from set & = {Accept,Reject} and using Boolean

combinations of value constraints as predicates.
Examples of operators include (Accept, “A, <1”) and
(Reject, “(A3=1) A (A; > 0)”). After just eight opera-
tors, 789,964 records were already validated (accepted
or rejected), or about 79% of the input.

The value of the cost function for our initial se-
quence s of validation operators was 6,248,799. Using
the greedy heuristic, we obtained sequence s’ for
which the value of the cost function was 4,697,646.
Therefore, while the greedy heuristic obviously does
not guarantee optimality, it can still significantly
improve the performance of the validation sequence
(e.g., by about 25% in our case).

6.5. Dynamic-Programming Approach to
Sequence Optimization

Assume s = (0y,...,0;) is an expert-specified val-

idation sequence used to validate data set D. We

construct an improved validation sequence s =

(01,...,0,) as a permutation of s. In the beginning,

let s :=s. Construction of s’ can be described as

(1) forn:=2to k

(2) CurrS:=5¢'[1..n]

(3)  BestS:=CurrS

(4) Candidate:=n—1
(5) for p:=n downto 2

(6) Success := False

(7) while —Success and Candidate > 1

(8) Success := SWAP(CurrS[Candidate],
CurrS[Candidate + 1, p])

9) Candidate := Candidate — 1

(10 end while
(11) if =Success then exit loop
(12) if BestS.Cost < CurrS. Cost then
BestS := CurrS

(13) Candidate := Candidate — 1
(14) end for
(15) s'[1..n] := BestS
(16) end for

Every iteration of this algorithm (lines 2-15) tries to
“optimize” a prefix of sequence s of length n, where
n=2,...,k (k is the length of the whole sequence),
ie., for each n the algorithm tries to optimize the
sequence (0}, ..., 0,). Clearly, we do not need to start
from n =1, since (0}) is by itself optimal, i.e., no
permutations are possible in a sequence of length 1.
During every iteration, the optimization procedure
follows a dynamic-programming approach (Cormen
et al. 2001), i.e., the sequence of length 7 is optimized
by taking the already “optimized” sequence of length
n —1 (the result from the previous iteration) and by
trying to “insert” the nth operator o), in all permissible
positions. Clearly, we have n possible such positions
in the sequence of length 7.
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More specifically, each iteration starts with the se-
quence of length n that is constructed from the se-
quence of length n — 1 (obtained from the previous
iteration) by adding operator o/, to the end of it, i.e.,
by keeping o;, in its current, nth, position (line 2). Fur-
thermore, we assume that this sequence is the best
sequence of length n so far (line 3). Then we try to
move the operator o, up through the sequence (for
loop, lines 5-14) one position at a time. To keep mov-
ing o], up through the sequence, some other opera-
tor has to be put in its place. The first candidate for
that is 0,_; (line 4), i.e., the heuristic will first try to
swap 0,_; and 0,. However, if at any point 0,_; cannot
be swapped with o, (because their labels are different
and their predicates are not orthogonal), we then try
to swap o,_, with both 0, ; and o), and so on, increas-
ing the block of operators to be moved up together
with the o, as necessary (while loop, lines 7-10). If we
are not able to swap any operator into the pth posi-
tion, then, naturally, we are done with all permissi-
ble permutations for this iteration (line 11). On the
other hand, as long as we are able to swap, we com-
pare every new sequence against our best sequence so
far, and update the best sequence, if needed (line 12).
After we are done with all permissible permutations
for this iteration, we keep the best permutation of the
first n operators (line 15).

As with our greedy heuristic, the dynamic-
programming approach can never increase the cost
of the validation sequence because in each iteration
we choose the sequence that has lower cost than the
default sequence, i.e., than the sequence with o), in its
initial nth place.

Furthermore, the dynamic-programming approach
provides the same theoretical guarantees as does our
greedy heuristic, i.e., the performance improvement
A,,, from the initial expert-specified sequence is
guaranteed to be at least

> (—mny, (18)

i: (0 <50,)A(0j<4 0;)

and the above algorithm is always able to present
feedback regarding the guaranteed cost savings it pro-
duces, based only on its knowledge of initial sequence
performance (n; values). However, the dynamic-
programming approach provides better optimization
performance than does the greedy heuristic. In par-
ticular, it would be able to produce the optimal val-
idation sequence in the “problematic” example from
Figure 3(a), which represented the worst-case scenario
for our greedy heuristic, because in the sixth iteration
(n = 6) the above algorithm would be able to move
operators 5 and 6 up through the sequence together. In
other words, it would produce the optimal result, as
presented in Figure 3(b).

Computational complexity of the dynamic-pro-
gramming heuristic is O(k®). This can be estimated by
noticing that each iteration (lines 2-15), i.e., when n =
2,...,k, has the worst case computational complex-
ity of O(n?). In particular, computational complexity
of the SWAP operation is proportional to the block
size that is being swapped, and this operation can-
not be attempted more than 7 — 1 times (based on
the dynamics of Candidate variable), e.g., it can indeed
take O(n?) operations to move a block of n/2 oper-
ators through the remaining /2 positions. Based on
the outer loop (lines 1-16), n goes from 2 to k so
the overall computational complexity of the dynamic-
programming approach to sequence optimization is
2243+ -+ (k—1)> + k* = O(k®). While computa-
tional complexity of the above algorithm is greater
than for the greedy heuristic in most real-life situa-
tions, the dynamic-programming approach produces
better optimization results, as indicated earlier. How-
ever, as with the greedy heuristic, it is very difficult
to derive more precise theoretical results about the
performance of the above algorithm without under-
standing the specifics of the domain knowledge, i.e.,
the underlying data and the validation predicates.

Finally, to illustrate the optimization performance
of our dynamic-programming approach more com-
prehensively and compare it to the greedy heuris-
tic, we tested the dynamic-programming approach
in the same experimental setting used to test the
greedy heuristic, as described at the end of Section
6.4. Specifically, we used the same expert-specified
validation sequence s and the same data stream of
1,000,000 records. Using the dynamic-programming
approach, we obtained sequence s” for which the
value of the cost function was 4,440,347 — about a 29%
improvement over the initial expert-specified valida-
tion sequence (where the cost value was 6,248,799)
and a 5.5% improvement over the result of the greedy
heuristic (where the cost value was 4,697,646).

7. Summary and Future Work

This paper presented an optimization approach for
sequencing a set of validation operators provided by
experts in the validation phase of data mining or
similar exercises. We explored various properties of
such validation sequences, such as sequence equiva-
lence, sequence permutation, and sequence optimal-
ity, and derived several theoretical results provid-
ing for a better understanding of the validation pro-
cess. We also addressed the problem of optimizing
the expert-specified validation sequence by search-
ing the set of equivalent sequence permutations. This
problem can also be viewed as a scheduling prob-
lem, where costs of performing individual validation
tasks depend highly on the position of this task (and
other tasks) in the schedule. We showed that this
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problem is NP-hard and presented two algorithms—a
greedy heuristic and a dynamic-programming-based
approach—that can be used to improve validation per-
formance of a given sequence.

In our approach we view validation as an entirely
expert-driven process and rely on the domain expert
to provide a validation sequence based on the expert’s
validation decisions. Moreover, we take the validation
sequence produced by the domain expert as exoge-
nous input and try to transform it into an equivalent
but computationally faster sequence. In other words,
this paper addresses the problem of how to do the
validation faster given the initial validation results,
which is important for several reasons, as discussed
in Section 1.

This paper focused on a general approach to opti-
mizing validation sequences and did not consider
any domain-specific information. In future work we
plan to extend our general validation results in sev-
eral ways. First, by considering specific application
domains, such as data-mining rules, data streams,
database records, and the assignment of classifica-
tion labels for supervised learning algorithms, we can
enhance validation capabilities of the domain expert
by incorporating particular knowledge about these
domains into the validation process and letting the
validation system assist the domain expert to gener-
ate better and more efficient validation sequences. For
example, a significant amount of research has been
done on rule-based expert systems. While the area of
expert systems does not directly address the expert-
driven rule-validation problem, we believe that some
of the results on how to deal with evolving rule
bases (Agarwal and Tanniru 1992) or how to improve
the performance of such systems (Gulati and Tanniru
1993) may lead to improvements of the rule valida-
tion approaches. We also believe that incorporating
domain knowledge into the validation process will not
only result in better validation sequences, but also will
allow us to derive more precise theoretical results. Sec-
ond, we did not address uncertainty as a part of the
validation problem, i.e., in our approach we assume
that the validation operators assign labels to validated
data without any uncertainty. As an initial step, we
wanted to study and understand the validation pro-
cess that is fully deterministic, but we plan to explore
incorporating uncertainty into the validation process.
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