
Online Supplement to “Validation Sequence
Optimization: A Theoretical Approach”

Gediminas Adomavicius
Department of Information and Decision Sciences, Carlson School of Management, University of

Minnesota, 321 19th Avenue South, Minneapolis, Minnesota 55455, USA, gedas@umn.edu

Alexander Tuzhilin
Department of Information, Operations, and Management Sciences, Stern School of Business, New York

University, 44 West 4th Street, New York, New York 10012, USA, atuzhili@stern.nyu.edu

INFORMS Journal on Computing

Appendix A: NP-Hardness Result for Validation Se-

quence Optimization

Task Sequencing to Minimize Weighted Completion Time The following problem

is often referred to as the problem of “Task Sequencing on a Single Processor to Minimize

Weighted Completion Time” (Garey and Johnson 1979).

Assume that a set of tasks T has to be sequenced for processing by a single machine. The

sequencing of the tasks must obey the precedence constraints imposed by a given directed

acyclic graph G = (V, E), where each vertex v ∈ V is associated with a different task

(therefore, |T | = |V |). In other words, G imposes a partial order on T . Task t′ ∈ T must

precede task t′′ ∈ T if there is a directed path from t′ to t′′ in G.

Furthermore, each task t is assigned a processing time p(t) ∈ Z+ and a weight w(t) ∈ Z.

Given a specific sequencing of T , e.g., s =< t1, . . . , tk >, the completion time of each task ti

is denoted as C(ti) and can be calculated as

C(ti) =
i∑

j=1

p(tj) (19)

where we assume that the processing of the first task begins immediately (i.e., at time 0)

and there is no idle time between consecutive jobs.

The objective of the sequencing problem is to find the feasible sequence (i.e., that obeys

the partial order imposed by G) s =< t1, . . . , tk > (ti ∈ T ) that minimizes the weighted total

completion time WTCT (s), defined as a weighted sum of individual completion times, i.e.,

WTCT (s) =

k∑

i=1

w(ti) C(ti) (20)

37



Lawler (1978) showed that the above problem is NP-hard. Furthermore, it was also

shown that the above problem remains NP-hard even when all w(t) = 1.

Assuming w(t) = 1 for all t ∈ T and using the definition of C(t) from (19), the weighted

total completion time of sequence s =< t1, . . . , tk > can be expressed as

WTCT (s) =

k∑

i=1

C(ti) =

k∑

i=1

i∑

j=1

p(tj) =

k∑

i=1

(k + 1 − i) p(ti) (21)

Equivalence of the Two Problems As indicated above, the problem of finding the task

sequence that obeys the specified partial order and minimizes the weighted total completion

time is NP-hard. We will show that the problem of finding the task sequence that obeys the

specified partial order and maximizes the weighted total completion time is also NP-hard.

Let G = (V, E) be an acyclic directed graph representing the partial order to be imposed

on tasks T . Then we will define a “reverse” graph G′ = (V ′, E ′) as follows. Let V ′ = V and

let E ′ contain the same edges as E, only each edge should point in the reverse direction.

That is, E ′ := {(u, v) : (v, u) ∈ E}.
As indicated in the following lemma, it can be shown that s =< t1, . . . , tk > minimizes

WTCT with respect to partial order G if and only if s′ =< tk, . . . , t1 > (i.e., s′ is the reversed

sequence s) maximizes WTCT with respect to partial order G′.

Lemma 22 s =< t1, . . . , tk > minimizes WTCT with respect to partial order G ⇐⇒ s′ =<

tk, . . . , t1 > maximizes WTCT with respect to partial order G′.

The above lemma indicates that solving the problem of task sequencing to minimize

weighted completion time subject to partial order constraints is equivalent to solving the

problem of task sequencing to maximize weighted completion time subject to partial order

constraints. Since the former problem has been shown to be NP-hard (Lawler 1978), the

latter problem is NP-hard as well. In addition, the latter problem is equivalent to our

restricted validation sequence optimization (i.e., benefit maximization) problem (12), since

in both cases we are searching for the sequence that satisfies the given partial order and

maximizes essentially the same function. (The functions in the two problems differ only by

a constant that does not depend on a particular sequencing and, therefore, does not affect

the solution.) Hence, our restricted optimization problem is NP-hard as well.

38



Appendix B: Proofs of Main Theoretical Results

Proof of Theorem 4

� First, let’s assume that validation sequences s and s′ contain validation operators u and

v that satisfy all three conditions. We will show that s �∼ s′.

Based on condition 3, there exists an input element e that satisfies Boolean expression (7).

Because this expression is a conjunction of several subexpressions, e satisfies each of these

subexpressions. Based on this we derive the following.

Since both pu(e) and
∧x−1

i=1 ¬pi(e) hold, we have that e satisfies predicate pu (which is at

position x in s), but does not satisfy any of the predicates p1, p2, . . . , px−1. These predicates

are at positions 1, 2, . . . , x−1 respectively in sequence s, therefore all predicates that precede

pu in the validation sequence would not match e. Consequently, in the sequence s, e would

be matched by predicate pu and labeled with lu. Obviously, u ≺s v, since otherwise v (and

not u, as we just showed) would match the input e in sequence s.

Similarly, since both pv(e) and
∧y−1

j=1 ¬p′j(e) hold, we have that e satisfies predicate pv

(which is at position y in s′), but does not satisfy any of the predicates p′1, p′2, . . . , p′y−1.

Therefore, in the sequence s′, e would be matched by operator pv and labeled with lv.

Obviously, v ≺s′ v, since otherwise u (and not v, as we just showed) would match the input

e in sequence s′.

Since both u ≺s v and v ≺s′ u, condition 1 is satisfied automatically.

Based on the condition 2, lu �= lv. Therefore, s would validate e differently than s′.

Therefore, when D = {e}, we have V Is(D) �= V Is′(D). Hence, s �∼ s′.

Conversely, let’s assume that s �∼ s′. We will show that these sequences contain validation

operators u and v that satisfy all three conditions mentioned above.

s �∼ s′ ⇒ (∃D)(V Is(D) �= V Is′(D)). Let’s denote V Is(D) = (V1, V2, . . . , V|L|) and

V Is′(D) = (V ′
1 , V

′
2 , . . . , V

′
|L|). Here Vi (i = 1, . . . , |L|) is a subset of D labeled with the

label Li by sequence s. Similarly, V ′
i (i = 1, . . . , |L|) is a subset of D labeled with the label

Li by sequence s′. Since V Is(D) �= V Is′(D), we have that (V1, . . . , V|L|) �= (V ′
1 , . . . , V

′
|L|).

Therefore, there exists i such that Vi �= V ′
i .

Since Vi �= V ′
i , let’s assume (without loss of generality) that there exists an entity e ∈ D

such that e ∈ Vi, but e /∈ V ′
i . (It could also be e ∈ V ′

i and e /∈ Vi, in which case the proof

would be virtually the same as below.) Since e /∈ V ′
i , there exists j ∈ {1, . . . , |L|} such that

i �= j and e ∈ V ′
j . Note that e can not remain unvalidated by s′, as shown in Lemma 3.

39



Because e ∈ Vi, there must exist a validation operator u = (Li, pu) in the sequence s

(say, at the position x, i.e., poss(u) = x) that validates e (i.e., pu(e) is True), but none of

the preceding operators do (i.e., ¬pi(e) for all i = 1, . . . , x − 1). Therefore, both pu(e) and
∧x−1

i=1 ¬pi(e) hold.

Similarly, because e ∈ V ′
j , there must exist a validation operator v = (Lj , pv) in the

sequence s′ (say, at the position y, i.e., poss(v) = y) that validates e (i.e., pv(e) is True),

but none of the preceding operators do (i.e., ¬p′j(e) for all j = 1, . . . , y− 1). Therefore, both

pv(e) and
∧y−1

i=1 ¬p′j(e) hold.

The previous two paragraphs combined show that condition 3 holds. Condition 2 also

holds, since u and v operators described above have different labels (i.e., Li and Lj , i �= j).

Finally, condition 1 holds as well, because the same input element e is validated by u in

sequence s and by operator v in sequence s′, which would be impossible when either of

operators u and v precedes the other one in both sequences, since they both match e. �
Proof of Theorem 8

� Let x be the largest number from the set {1, . . . , k}, such that ox+1 ≺s′ ox. Then, let’s

construct the sequence s′′ =< o′′1, . . . , o
′′
k > as follows. Let o′′i := oi, for all i = {1, . . . , k},

such that i �= x and i �= x + 1. Also, let o′′x = ox+1 and o′′x+1 = ox.

Essentially, sequence s′′ is the same as s except for ox and ox+1 that are swapped. Obvi-

ously, s′′ is a simple permutation of s, thus dist(s, s′′) = 1.

Now we will show that s ∼ s′′. Since s′′ is a simple permutation of s, Corollary 6 gives

us two conditions to be satisfied in order to have s ∼ s′′.

Assume ox and ox+1 have the same label, i.e., lx = lx+1, then the first condition from

Corollary 6 is satisfied. Therefore, s ∼ s′′. In case ox and ox+1 do not have the same label,

the only way for s ∼ s′′ to be true is for ox and ox+1 to satisfy the second condition from

Corollary 6. For the remainder of this proof we will assume that ox and ox+1 do not have the

same label, and we will show that they satisfy the second condition from Corollary 6, i.e.,

¬(px ∧ px+1) ∨
x−1∨

i=1

pi (22)

Let’s go back to sequences s and s′ for a moment. Since s ∼ s′, from Corollary 5 we

have that all pairs of operators from s, including ox and ox+1, must satisfy at least one of

the three necessary and sufficient conditions for s ∼ s′. Let’s consider the pair ox and ox+1.

Since ox precedes ox+1 in s, but ox+1 precedes ox in s′ (that’s how we chose ox in the

beginning of the proof), the first condition is not satisfied by these two operators. These

40



operators do not satisfy the second condition as well, since they do not have the same label

(according to our assumption). Therefore, since s ∼ s′, ox and ox+1 satisfy the third condition

of Corollary 5, namely:

¬(px ∧ px+1) ∨
x−1∨

i=1

pi ∨
y−1∨

j=1

p′j (23)

where y is the position of ox+1 in s′. Therefore, ox+1 = o′y. Also note that, by construction,

none of o′j (j ∈ {1, . . . , y − 1}) can be equal to ox or ox+1, since ox+1 = o′y and ox+1 ≺s′ ox.

We will show that every o′j (j ∈ {1, . . . , y − 1}) is from among o1, . . . , ox−1. Suppose

otherwise, there exists j ∈ {1, . . . , y − 1} such that o′j = oz, where x ≤ z ≤ k. Since, as

mentioned above, none of o′j (j ∈ {1, . . . , y − 1}) can be equal to ox or ox+1, we can obtain

an even tighter bound for z, i.e., x + 1 < z ≤ k.

Then, consider validation operators ox+1 and oz. ox+1 precedes oz in s, because x+1 < z.

However, oz precedes ox+1 in s′, because poss′(ox+1) = y and poss′(oz) < y. From Lemma 7

we have, that there exists t, x + 1 ≤ t ≤ z − 1, such that ot+1 precedes ot in s′.

Thus, we showed that there exists t ≥ x + 1 > x, such that ot+1 precedes ot in s′.

However, by definition x is the largest number, such that ox+1 precedes ox in s′ (i.e., we

chose x to be the largest such number in the first paragraph of this proof). We derived

a contradiction, therefore our assumption that there exists j ∈ {1, . . . , y − 1} such that

o′j = oz, where x ≤ z ≤ k is incorrect. This implies that every o′j (j ∈ {1, . . . , y − 1}) is

from among o1, . . . , ox−1. Therefore, every p′j (j ∈ {1, . . . , y−1}) is from among p1, . . . , px−1.

Consequently, the third necessary condition (23) of s ∼ s′ in this case is equivalent to:

¬(px ∧ px+1) ∨
x−1∨

i=1

pi (24)

Hence, based on the fact that s ∼ s′, we proved that the Boolean expression (24) holds

for every element e ∈ E . However, this expression is exactly the same as the one described

by (22), which was needed to prove that s ∼ s′′ (when ox and ox+1 do not have the same

label). Therefore, ox and ox+1 satisfy the second sufficient condition of Corollary 6 and,

hence, s ∼ s′′.

Now we have s ∼ s′ and s ∼ s′′. Because of the transitivity and the symmetry of the

relation R∼ (see Lemma 2), s′ ∼ s′′ is also true. Also, we know that dist(s, s′) = d and

dist(s, s′′) = 1. Because of how we constructed s′′, s′ has all the same precedence inversions

with respect to s′′ as with respect to s, except for one. More specifically, ox and ox+1 have

41



the same precedence in both s′ and s′′. Therefore, the distance between s′ and s′′ is one less

than between s′ and s, i.e., dist(s′, s′′) = d − 1. �
Proof of Theorem 9

� Assume s ∼ s′. Let’s denote s0 := s and sd := s′. Based on Theorem 8, there ex-

ists sequence s1, such that s1 is a safe simple permutation of s0, and also s1 ∼ sd, and

dist(s1, sd) = d− 1. Repeat this process for s1 and sd to obtain s2, etc. In general, when we

have si, such that si ∼ sd and dist(si, sd) = d− i, we can obtain si+1 (which is a safe simple

permutation of si), such that si+1 ∼ sd and dist(si+1, sd) = d − i − 1. Hence, there exists

d + 1 validation sequences s0, s1, . . . , sd, such that s0 = s, sd = s′, and si is a safe simple

permutation of si−1 for every i = 1, . . . , d.

Conversely, assume that there exists d + 1 validation sequences s0, s1, . . . , sd, such that

si is a safe simple permutation of si−1 (i.e., si−1 ∼ si) for every i = 1, . . . , d. By transitivity

of the equivalence relation: s0 ∼ sd. Hence, s ∼ s′. �
Proof of Lemma 19

� Let’s assume s � s′ and let’s consider an arbitrary validation operator oi from sequence

s, i.e., poss(oi) = i. Also, let j = poss′(oi). We have to show that ni = n′
j . We will show this

by showing that oi validates exactly the same subset of D in both s and s′.

Assume otherwise, that there exists e ∈ D such that either (a) oi validates e in s but not

in s′, or (b) oi validates e in s′ but not in s. We will provide the proof for the first of these

two situations. The proof for the second one is essentially identical.

Since there exists e ∈ D such that oi validates e in s but not in s′, there must exist a

validation operator ox such that ox ≺s′ oi and ox validates e. However, oi ≺s ox, because

otherwise oi would not be able to validate e in s (i.e., ox would validate e before oi). Therefore,

we have two validation operators oi and ox such that oi ≺s ox, ox ≺s′ oi, and pi � ⊥px (since

there exists e ∈ D that can be validated by both oi and ox). This is a contradiction, because

by the definition of very strong equivalence all pairs of validation operators must satisfy one

of two conditions (see Definition 10 in the paper), whereas the pair oi and ox satisfies neither.

Therefore, given s and s′, where s′ is very strongly equivalent to s, each validation

operator validates exactly the same subset of inputs from D in both s and s′. Hence, for all

i: ni = n′
j , where j = poss′(oi). �

Proof of Theorem 21

� First, it is clear that ni = n′
i for all i < x, since only the operators ox and ox+1 are

permuted. That is, first x − 1 operators in both sequences s and s′ are the same and will

42



produce the same validation results.

It is also easy to see that ni = n′
i for all i > x+1. This is the case because the set of first

x + 1 validation operators is the same in both sequences (not necessarily in the same order).

Obviously, the exact same subset of input dataset D would remain unvalidated after x + 1

operators in both. (For more precise reasoning, consider the two sequences of length x + 1

and see Lemma 3 in the paper.) In addition, oi = o′i for i > x + 1. Therefore, ni = n′
i for all

i > x + 1.

We still need to estimate n′
x and n′

x+1. Consider operators ox = (lx, px) and ox+1 =

(lx+1, px+1). We know that o′x = ox+1 and o′x+1 = ox. Since s ≈ s′ and s′ is a simple

permutation of s, according to Lemma 16 we have one of the following two possibilities:

• px⊥px+1. This means that validation operators ox and ox+1 can never both match the

same input data point. Therefore, it does not matter whether ox precedes ox+1 (as in

sequence s) or ox+1 precedes ox (as in sequence s′), they will still validate the same

exact data points as before. Hence, n′
x = nx+1 and n′

x+1 = nx.

• lx = lx+1. Since ox+1 will precede ox in sequence s′, obviously, it will be able to validate

at least as many data points in s′ as in s, therefore n′
x ≥ nx+1. As mentioned above,the

set of first x + 1 validation operators is the same in both sequences (not necessarily in

the same order) and the exact same subset of input dataset D would remain unvalidated

after x + 1 operators in both. Therefore,
∑x+1

i=1 ni =
∑x+1

i=1 n′
i. However, since ni = n′

i

for (i < x), we have that nx + nx+1 = n′
x + n′

x+1. Furthermore, since n′
x ≥ nx+1 (as we

have just shown), we have that n′
x+1 ≤ nx.

Therefore, in both cases above it is true that nx +nx+1 = n′
x +n′

x+1 and n′
x+1 ≤ nx. Now,

let’s estimate how much different is the cost of sequence s from the cost of sequence s′, when

s ≈ s′ and s′ is a simple permutation of s.

In the case where s′ is a simple permutation of s, we get (by applying the above analysis

43



and also by plugging in the definition of the benefit function from Equation 4):

∆s→s′ = benefit(s′, D) − benefit(s, D)

=
k−1∑

i=1

(k − i) n′
i −

k−1∑

i=1

(k − i) ni =
k−1∑

i=1

(k − i)(n′
i − ni)

= (k − x)(n′
x − nx) + (k − x − 1)(n′

x+1 − nx+1)

= (k − x)(n′
x + n′

x+1 − nx − nx+1) + (nx+1 − n′
x+1)

= nx+1 − n′
x+1

≥ nx+1 − nx

where in the last equation we actually have an equality in the case when px and px+1 are

orthogonal, as demonstrated in Lemma 19. �

References

Garey, M. R., D. S. Johnson. 1979. Computers and Intractability: A Guide to the Theory of

NP-Completeness . W. H. Freeman and Company, New York, NY.

Lawler, E. L. 1978. Sequencing jobs to minimize total weighted completion time subject to

precedence constraints. Ann. of Discrete Math. 2 75–90.

44




