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Abstract

In many e-commerce applications, ranging from dynamic Web content presentation,
to personalized ad targeting, to individual recommendations to the customers, it is
important to build personalized profiles of individual users from their transactional
histories. These profiles constitute models of individual user behavior and can be
specified with sets of rules learned from user transactional histories using various data
mining techniques. Since many discovered rules can be spurious, irrelevant, or trivial,
one of the main problems is how to perform post-analysis of the discovered rules, i.e.,
how to validate user profiles by separating “good” rules from the “bad.” This validation
process should be done with an explicit participation of the human expert. However,
complications may arise because there can be very large numbers of rules discovered
in the applications that deal with many users, and the expert cannot perform the
validation on a rule-by-rule basis in a reasonable period of time. This paper presents
a framework for building behavioral profiles of individual users. It also introduces a
new approach to expert-driven validation of a very large number of rules pertaining to
these users. In particular, it presents several types of validation operators, including
rule grouping, filtering, browsing, and redundant rule elimination operators, that allow
a human expert validate many individual rules at a time. By iteratively applying such
operators, the human expert can validate a significant part of all the initially discovered
rules in an acceptable time period. These validation operators were implemented as a
part of a one-to-one profiling system. The paper also presents a case study of using
this system for validating individual user rules discovered in a marketing application.

Keywords: personalization, profiling, rule discovery, post-analysis, validation.

1This paper substantially augments and improves the preliminary version that appeared as a poster paper
in the Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD-99) [AT99].



1 Introduction

In various e-commerce applications, ranging from dynamic Web content presentation, to

personalized ad targeting, to individual recommendations to the customers, personalization

has become an important business problem [PR93, Per99]. For example, the personalized

version of Yahoo (myYahoo) provides to its customers personalized content, such as local

weather or interesting events in the area where the customer lives. As another example,

Amazon.com and Moviecritic.com provide recommendations on what books to read and

movies to see respectively. In general, there is a very strong interest in the industry in per-

sonalized (one-to-one) marketing applications [PR93, AKY98] and in recommender systems

[CAC97, Kau98, Bau99, SNP99] that provide personal recommendations to individual users

for products and services that might be of interest to them. The advantages of these person-

alized approaches over more traditional segmentation methods are well documented in the

literature [PR93, Per99, AKY98].

One of the key issues in developing such e-commerce applications is the problem of

constructing accurate and comprehensive profiles of individual customers that provide the

most important information describing who the customers are and how they behave. This

problem is so important for building successful e-commerce applications that some authors

propose that companies treat customer profiles as key economic assets in addition to more

traditional assets such as plant, equipment and human assets [Hag99, HS99]. Although some

work on how to construct personal user profiles has been published in the academic literature

(and we will review it below), most of the work has been done in the industry so far.

There are two main approaches to addressing the profiling problem developed by dif-

ferent companies. In the first approach, taken by such companies as Engage Technologies

[www.engage.com] and Personify [www.personify.com], profiles are constructed from the cus-

tomers’ demographic and transactional data and contain important factual information about

the customers. Examples of such factual information include (a) demographic attributes,

such as age, address, income and a shoe size of a customer, and (b) certain facts extracted

from his or her transactional data, such as that the average and maximal purchase amounts

of that customer over the last year were $23 and $127 respectively, or that the favorite news-

paper of a particular Travelocity customer is the New York Times and her favorite vacation

destination is Almond Beach Club in Barbados. This factual data comprises the profile of a

customer and is typically stored in a relational table.
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According to the other approach, taken by such companies as Art Technology Group

[www.atg.com] and BroadVision [www.broadvision.com], customer profiles contain not only

factual information but also rules that describe on-line behavioral activities of the customers.

However, these rules are defined by experts (e.g., a marketing manager working on a par-

ticular marketing application). For example, a manager may specify that if a customer of a

certain type visits the Web site of the on-line groceries shopping company ShopTillUStop.com

on Sunday evenings, that customer should be shown the discount coupons for diapers. This

approach differs from the previous approach in that the profiles contain behavioral rules in

addition to the factual information about the customer. However, these behavioral rules are

not constructed in a truly one-to-one manner since these rules are specified by the expert

rather than learned from the data and are applicable only to groups of customers.

In addition to the developments in the industry, the profiling problem was also studied in

the data mining academic community in [FP96, FP97, ASY98, AT99, Cha99]. In particular,

[FP96, FP97] studied this problem within the context of fraud detection in the cellular

phone industry. This was done by learning rules pertaining to individual customers from

the cellular phone usage data using the rule learning system RL [CP90]. However, these

discovered rules were used not for the purpose of understanding the personal behavior of

individual customers, but rather to instantiate generalized profilers that are applicable to

several customer accounts for the purpose of learning fraud conditions.

[ASY98] study the problem of on-line mining of customer profiles specified with associa-

tion rules, where the body of a rule refers to the demographic information of a user, such as

age and salary, and the head of a rule refers to transactional information, such as purchasing

characteristics. Moreover, [ASY98] present a multidimensional indexing structure for min-

ing such rules. The proposed method provides a new approach to deriving association rules

that segment users based on their transactional characteristics. However, it does not derive

behavior of an individual user in a one-to-one fashion [PR93].

Still another approach to the profiling problem was presented by [Cha99] in the context

of providing personalized Web search. In this approach the user profile consists of a Web

Access Graph summarizing Web access patterns by the user, and a Page Interest Estimator

characterizing interests of the user in various Web pages. Although the approach presented

by [Cha99] goes beyond building simple factual profiles, these profiles are specialized to be

used in specific Web-related applications, i.e., to provide personalized Web search. This
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means that they do not attempt to capture all aspects of the on-line behavior of individual

users. One specific consequence of this specialization is that [Cha99] does not use behavioral

rules as a part of a user profile.

In [AT99], we presented an initial approach to the profiling problem that we expand

and improve in this paper. In particular, in this paper we present a framework for building

behavioral profiles of individual users. These behavioral profiles contain not only factual

information about the users, but also capture more comprehensive behavioral information

using conjunctive rules that are learned from user transactional histories using various data

mining methods. However, there are caveats to this approach due to the nature of per-

sonalization applications. In particular, as will be explained in the paper, the behavioral

rules learned about individual users can be unreliable, irrelevant, or obvious. Therefore,

post-analysis, including rule validation, becomes an important issue for building accurate

personalized profiles of users. The second contribution of this paper lies in developing a new

approach to validating the discovered rules during the post-analysis stage of the data mining

process. This validation process is performed by the domain expert who can iteratively apply

various rule validation operators. In particular, we describe different validation operators

and demonstrate how these operators are integrated into a unifying framework. Develop-

ment of specific validation operators, in particular, rule grouping method based on attribute

hierarchies, constitutes the third contribution of this paper. Finally, the paper describes a

case study of testing the proposed validation method on a marketing application.

The “quality” of rules stored in user profiles can be defined in several ways. In particular,

rules can be “good” because they are (1) statistically valid, (2) acceptable to a human expert

in a given application, (3) “effective” in the sense that they result in certain benefits obtained

in an application. In this paper, we focus on the first two aspects, i.e., statistical validity

and acceptability to an expert. The third aspect of rule quality is a more complex issue, and

we do not address it in this paper, leaving it as a topic for future research.

The rule validation problem in the post-analysis stage of the data mining process has

been addressed before in the data mining community. In particular, there has been work

done on specifying filtering constraints that select only certain types of rules from the set of

all the discovered rules; examples of this research include [KMR+94, LH96, LHM99]. In these

approaches the user specifies constraints but does not do it iteratively. In contrast to this, it

has been observed by several researchers, e.g. [BA96, FPSS96, ST96a, PJ98, LBA98, AT99,
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Sah99], that knowledge discovery should be an iterative process that involves an explicit

participation of the domain expert, and we apply this point of view to the rule validation

process.

The rest of the paper is organized as follows. In Section 2, we present our approach to

profiles and profile construction. The profile validation process is described in Section 3, and

specific validation operators are presented in Section 4. In Section 5 we describe how to do

incremental validation. In Section 6 we describe the case study of using our profiling system

in a market research application. Finally, we discuss additional issues related to the profile

construction problem in Section 7.

2 A Proposed Approach to Profiling

2.1 Defining User Profiles

In order to explain what user profiles are and how they can be constructed, we first focus

on the data that is used for constructing these profiles.

Data Model. Various e-commerce personalization applications can contain different types

of data about individual users. However, this data can be classified in many applications

into two basic types – factual and transactional, where the factual data describes who the

user is and the transactional data describes what the user does.

For example, in a marketing application based on purchasing histories of users, the factual

data would be the demographic data of users, such as name, gender, birth date, and salary.

The transactional data would consist of records of purchases that the user made over a period

of time. A purchase record would include such attributes as the date of purchase, product

purchased, product characteristics, amount of money spent, use or no use of a coupon, value

of a coupon if used, discount applied, etc.

Profile Model. A profile is a collection of information that describes a user. One of the open

issues in the profile construction process is what information should be included in a user

profile. In their simplest form, user profiles contain factual information that can be described

as a set of individual facts that, for example, can be stored in a record of a relational database

table. These facts may include demographic information about the user, such as name,

address, date of birth, and gender, that are usually taken from the user description data.

The facts can also be derived from the transactional and item description data. Examples

of such facts are “the favorite beer of user ALW392 is Heineken”, “the biggest purchase
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made by ALW392 was for $237”, “the favorite movie star of ALW392 is Harrison Ford.”

The construction of factual profiles is a relatively simple and well-understood problem, and

keyword-based factual profiles have been extensively used in recommender systems.

A user profile can also contain a behavioral component that describes behavior of the

user learned from his or her transactional history. One way to define user behavior is with

a set of conjunctive rules, such as association [AMS+96] or classification rules [BFOS84].

Examples of rules describing user behavior are: “when user ALW392 comes to the Web

site Y from site Z, she usually returns back to site Z immediately”, “when shopping on

the NetGrocer.com Web site on weekends, user ALW392 usually spends more than $100

on groceries”, “whenever user ALW392 goes on a business trip to Los Angeles, she stays

there in expensive hotels.” The use of rules in profiles provides an intuitive, declarative and

modular way to describe user behavior and was advocated in [FP97, AT99]. These rules can

either be defined by domain experts, as is done in systems developed by BroadVision and

Art Technology Group, or derived from the transactional data of a user using various data

mining methods. We describe this derivation process in the next section.

2.2 Profile Construction

Since we focus on personalization applications, rule discovery methods should be applied

individually to the transactional data of every user, thus, capturing truly personal behavior

of each user.

Such rules can be discovered using various data mining algorithms. For example, to

discover association rules, we can use Apriori [AMS+96] and its numerous variations. Sim-

ilarly, to discover classification rules, we can use CART [BFOS84], C4.5 [Qui93], or other

classification rule discovery methods. We would like to point out that our approach is not

restricted to any specific representation of data mining rules and their discovery methods.

One of the serious problems with many rule discovery methods is that they tend to gener-

ate large numbers of patterns, and often many of them, while being statistically acceptable,

are trivial, spurious, or just not relevant to the application at hand [PSM94, ST96b, LH96,

BMUT97, Ste97, PT98, PT99]. Therefore, post-analysis of discovered rules becomes an im-

portant issue, since there is a need to validate the discovered rules. For example, assume

that a data mining method discovered the rule stating that, whenever customer ALW392

goes on a business trip to Los Angeles, she mostly stays in expensive hotels there. In partic-
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ular, assume that ALW392 went to Los Angeles 7 times over the past 2 years and 5 out of

7 times stayed in expensive hotels. Before this rule can be placed into ALW392’s profile, it

needs to be validated, since it may not be immediately clear whether this rule really captures

the behavior of ALW392, or whether it constitutes a spurious correlation or is simply not

relevant to the application at hand. In the next section we present methods for validating

behavioral rules in user profiles.

3 Validation of User Profiles

A common way to perform the post-analysis of data mining results is to let the domain expert

perform this task, and several data mining systems support this capability. For example,

MineSet [BKK97] provides a wide range of visualization techniques allowing the end-user

to examine visually the results discovered by its data mining tools and thus evaluate the

quality of these results.

In our approach, individual rules discovered during the data mining stage are validated

by the expert, and, depending on how well they represent the actual behaviors of the users,

some rules are “accepted” and some “rejected” by the expert. Then the accepted rules form

the behavioral profiles of users.

One of the main issues about validating individual rules of users by a human expert is

scalability. In many e-commerce personalization applications the number of users tends to

be very large. For example, the number of registered users at major Web sites is measured

in millions. If we discover a hundred rules per customer on average, then the total number

of rules for such sites would be measured in hundreds of millions. Therefore, it would be

impossible for a human expert to validate all the discovered rules on a one-by-one basis in

such applications.

We address this problem by providing a framework allowing the human expert validate

large numbers of rules (instead of individual rules) at a time with relatively little input from

the expert. This is done by applying different rule validation operators that are described

in Section 4. Then rule validation becomes an iterative process and is described in Figure 1.

In particular, the profile building activity is divided into two phases. In Phase I, the data

mining phase, rules describing behaviors of individual users are generated from the users’

transactional data as was described in Section 2.2.

Phase II constitutes the rule validation process. Rule validation, unlike rule discovery
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Figure 1: The profile building process.

(Phase I), is not performed separately for each user, but rather for all users at once. The

reason we propose performing rule validation collectively (rather than individually) for all

users is that there are usually many similar or even identical rules across different users. For

example, the rule “when shopping on the NetGrocer.com Web site on weekends, user ALW392

usually spends more than $100 on groceries” can be common to many users. In addition,

although rules “when user ALW392 comes to our Web site from site Y, she usually returns

back to site Y immediately,” and “when user KTL158 comes to our Web site from site Z,

she usually returns back to site Z immediately,” are not identical, they are quite “similar”

and can be examined by the expert together. The collective rule validation allows one to

deal with such common rules once, thus significantly reducing validation effort. Therefore,

in the beginning of Phase II, rules from all the users are collected into one set. Each rule is

tagged with the ID of the user to which it belongs, so that each accepted rule could be put

into the profile of that user at the end of the validation phase.

After rules from all users are collected into one set, the rule validation process is performed

as a second part of Phase II. This process is described in Figure 2. All rules discovered during

Phase I (denoted by Rall in Figure 2) are considered unvalidated. The human expert selects

various validation operators and applies them successively to the set of unvalidated rules.

The application of each validation operator results in validation of some of the rules. In

particular, some rules get accepted and some rejected (sets Oacc and Orej in Figure 2). Then

the next validation operator would be applied to the set of the remaining unvalidated rules

(set Runv). This validation process stops when the TerminateValidationProcess condition

is met. This condition is set by the human expert and is discussed later in this section.

After the validation process is stopped, the set of all the discovered rules (Rall) is split into

7



Input: Set of all discovered rules Rall.
Output: Mutually disjoint sets of rules Racc, Rrej, Runv,

such that Rall = Racc ∪ Rrej ∪ Runv.

(1) Runv := Rall, Racc := ∅, Rrej := ∅.
(2) while (not TerminateValidationProcess()) begin
(3) Expert selects a validation operator (say, O) from the set of

available validation operators.
(4) O is applied to Runv. Result: disjoint sets Oacc and Orej.
(5) Runv := Runv − Oacc − Orej, Racc := Racc ∪ Oacc, Rrej := Rrej ∪ Orej.
(6) end

Figure 2: An algorithm for the rule validation process.

three disjoint sets: accepted rules (Racc), rejected rules (Rrej), and possibly some remaining

unvalidated rules (Runv). At the end of Phase II all the accepted rules are put into the

behavioral profiles of their respective users. This is possible, because all the rules have been

tagged with the user ID in the beginning of Phase II as described above.

As was already stated above and shown in Figure 2, various validation operators are

successively applied to the set of the unvalidated rules until the stopping criterion Termi-

nateValidationProcess is reached. The stopping criterion can be specified by the expert and

may include such conditions as (a) only few rules remain unvalidated, (b) only few rules are

being validated at a time by one or several validation operators, and (c) the total elapsed

validation time exceeds the predetermined validation time.

In this section we described the overall validation process. We present the detailed

description of various specific validation operators in the next section.

4 Validation Operators

As stated in Section 3, validation operators provide a way for the domain expert to examine

multiple rules at a time. This examination process can be performed in the following two

ways. First, the expert may already know some types of rules that he or she wants to

examine and accept or reject based on the prior experience. Therefore, it is important to

provide capabilities allowing him or her to specify such types of rules in advance. In this

section, we present template- and interestingness-based filtering operators that serve this

purpose. Second, the expert may not know all the relevant types of rules in advance, and

it is important to provide methods that group discovered rules into classes that he or she
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Figure 3: An example of an attribute hierarchy for similarity-based grouping.

can subsequently examine and validate. In this section we also present the similarity-based

rule grouping operator that serves this purpose. In addition, we describe other operators

that can be used in the validation process, including visualization, statistical analysis, and

browsing operators.

Although our validation methods are general and can be applied to several forms of

conjunctive rules, we focus mainly on association rules with discrete values in this paper.

4.1 Similarity-based rule grouping

As pointed out in Section 3, there can be many “similar” rules among all the discovered rules,

and it would be useful for the domain expert to evaluate all these similar rules together rather

than individually. In order to do this, some similarity measure that would allow grouping

similar rules together needs to be specified.

In this paper, we propose a method to specify such a similarity measure using attribute

hierarchies. An attribute hierarchy is organized as a tree by the human expert in the be-

ginning of the validation process.2 The leaves of the tree consist of all the attributes of

the data set to which rule discovery methods were applied, i.e., all the attributes that can

potentially be present in the discovered rules. The non-leaf nodes in the tree are specified by

the human expert and are obtained by combining several lower-level nodes into one parent

node. For instance, Figure 3 presents an example of such a hierarchy, where nodes A1 and

A2 are combined into node A6 and nodes A3, A4 and A5 into node A7, and then nodes A6

and A7 are combined into node A8. Another example of an attribute hierarchy is presented

in Figure 9. We call non-leaf nodes of an attribute hierarchy aggregated attributes.

The attribute hierarchy is used for determining similar rules and grouping them together.

2We would like to point out that in certain domains, e.g., groceries, such hierarchies may already exist, and
some well-known data mining algorithms, such as [CP90, SA95], explicitly assume the existence of attribute
(or, more generally, feature) hierarchies. Alternatively, attribute hierarchies may possibly be constructed
automatically in certain other applications. However, automatic construction of such hierarchies is beyond
the scope of this paper.
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More specifically, the semantics of the similarity-based grouping operator is defined as fol-

lows.

1. Specifying rule aggregation level. Rules are grouped by specifying the level of rule

aggregation in the attribute hierarchy which is provided by the human expert. Such

a specification is called a cut, and it forms a subset of all the nodes of the tree (leaf

and non-leaf), such that for every path from a leaf node to the root, exactly one node

on such path belongs to this subset. Therefore, given a cut, every leaf node has its

corresponding cut node. Given a cut C, we define for any leaf node Xi its corresponding

cut node cutC (Xi) as follows:

cutC(Xi) =
{

Xi, if Xi ∈ C
cutC(parent(Xi)), otherwise

Figure 3 presents several different cuts of an attribute hierarchy that are represented

by shaded regions. For example, for the cut from Figure 3(c), cut3c(A2) = A2 and

cut3c(A3) = A7. Moreover, the cut node of any leaf node can be calculated in constant

time by implementing a straightforward lookup table for that cut.

2. Aggregating rules. Given a cut C, a rule X1∧ ...∧Xk ⇒ Xk+1∧ ...∧Xl is aggregated

by performing the following syntactic transformation:

cutC (X1 ∧ ... ∧ Xk ⇒ Xk+1 ∧ ... ∧ Xl) =
cutC (X1) ∧ ... ∧ cutC (Xk) ⇒ cutC (Xk+1) ∧ ... ∧ cutC (Xl)

where cutC(Xi) maps each leaf node of the attribute hierarchy into its corresponding

cut node as described in Step 1 above. The resulting rule is called an aggregated rule.

Since several different leaf nodes can have the same cut node, sometimes after aggre-

gating a rule we can get multiple instances of the same aggregated attribute in the

body or in the head of the rule. In this case we simply eliminate those extra instances

of an attribute. Consider, for example, the rule A2∧A3∧A4 ⇒ A5. By applying cut

(c) from Figure 3 to this rule, we will get the aggregated rule A2∧A7∧A7 ⇒ A7, and

by removing duplicate terms A7 in the body of the rule we finally get A2∧A7 ⇒ A7.3

3Note that, while the just obtained aggregated rule A2∧A7 ⇒ A7 may look like a tautology, it is not. As
mentioned above, aggregated rules are obtained from the originally discovered rules using purely syntactic
transformations. Therefore, the above mentioned aggregated rule does not make any logical statements
about the relationship between attributes A2 and A7 in the given data, but simply denotes the class of rules
of the particular syntactic structure.
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Initial Rule groups obtained from rule set S using cuts :
rule set S cut 3(b) cut 3(c) cut 3(d)

A1 ⇒ A3 A6 ⇒ A3 (3) A7 ⇒ A7 (2) A6 ⇒ A7 (3)
A1 ∧ A2 ⇒ A3 A3 ∧ A6 ⇒ A5 (2) A2 ∧ A7 ⇒ A1 (2) A6 ∧ A7 ⇒ A7 (3)
A1 ∧ A2 ∧ A3 ⇒ A5 A3 ⇒ A5 (1) A2 ∧ A7 ⇒ A7 (2) A6 ∧ A7 ⇒ A6 (2)
A2 ∧ A3 ⇒ A4 A3 ∧ A5 ⇒ A4 (1) A1 ⇒ A7 (1) A7 ⇒ A7 (2)
A2 ∧ A3 ⇒ A5 A3 ∧ A6 ⇒ A4 (1) A2 ⇒ A7 (1)
A2 ⇒ A3 A4 ∧ A6 ⇒ A6 (1) A1 ∧ A2 ⇒ A7 (1)
A2 ∧ A4 ⇒ A1 A5 ∧ A6 ⇒ A6 (1) A1 ∧ A2 ∧ A7 ⇒ A7 (1)
A3 ⇒ A5
A2 ∧ A5 ⇒ A1
A3 ∧ A5 ⇒ A4

Figure 4: Grouping a Set of Rules Using Several Different Cuts from Figure 3 (the number
of rules in groups is specified in parentheses).

Given a cut, the computational complexity of a single rule aggregation is linearly pro-

portional to the size of the rule (i.e., total number of attributes in the rule), as will be

described later.

3. Grouping rules. Given a cut C, we can group a set of rules S into groups by

applying C to every rule in S as described in Step 2 above. When a cut is applied

to a set of rules, different rules can be mapped into the same aggregated rule. For

example, consider rules A2 ∧ A3 ∧ A4 ⇒ A5 and A2 ∧ A5 ⇒ A3. After applying cut

(c) from Figure 3 to both of them, they are mapped into the same rule A2∧A7 ⇒ A7.

More generally, we can group a set of rules based on the cut C as follows. Two rules

R1 and R2 belong to the same group if and only if cutC(R1) = cutC(R2). Naturally,

two different aggregated rules represent two disjoint groups of rules. As an example,

Figure 4 presents the results of grouping a set of rules based on the attribute hierarchy

and several different cuts shown in Figure 3.

The grouping operator described above allows the user to group rules into sets of similar

rules, where similarity is defined by the expert who selects a specific cut of the attribute

hierarchy. Moreover, instead of examining and validating individual rules inside each group,

the user can examine the group of these rules as a whole based on the aggregated rule (that

is common for all the rules in the group) and decide whether to accept or reject all the rules

in that group at once based on this aggregated rule.

So far, we assumed that the leaves in the attribute hierarchies are specified by the at-

tributes of the data set. However, we also consider the case when attribute hierarchies

include values and aggregated values of attributes from the data set. For example, assume

that a data set has attribute Month . Then Figure 5 presents an attribute hierarchy with 12
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Attributes

Aggr. values

Values

Aggr. attributes

YES NO YES NO YES NO

Coupon
Manuf.

Coupon
Store

Sale
Store

12 1 2 3 4 5 6 7 8 11109

winter spring summer fall

Month

Discount Type

..... .....

Figure 5: A fragment of attribute hierarchy which includes attribute values.

values as the leaves representing specific months of the year that are grouped together into

four aggregated values: winter , spring, summer , and fall .

For these extended hierarchies, cuts can include not only attribute and aggregated at-

tribute nodes, but also value and aggregated value nodes. For example, consider the extended

attribute hierarchy presented in Figure 5 that includes 12 values for the attribute Month and

the boolean values for the attributes StoreSale, StoreCoupon, and ManufCoupon. Also con-

sider the cut from Figure 5 specified with a shaded line, and the following three rules: (1)

Month=3 ⇒ StoreSale=YES, (2) Month=5 ⇒ ManufCoupon=NO, (3) Month=10 ⇒
StoreSale=YES. The cut presented in Figure 5 maps rules (1) and (2) into the same aggre-

gated rule Month=spring ⇒ DiscountType. However, rule (3) is mapped into a different

aggregated rule Month=fall ⇒ DiscountType by the cut. Therefore rule (3) will be placed

into a different group than rules (1) and (2).

The grouping operator based on attribute hierarchies provides a flexible way for the

expert to group rules according to the granularity important to that expert. This provides

the expert with the ability to evaluate larger or smaller number of groups of similar rules

based on his or her preferences and needs. Moreover, an efficient algorithm that implements

the grouping operator has been developed and is presented in Figure 6. The procedure GROUP

performs the grouping using a single pass over the set of discovered rules (the foreach loop

statement in lines 3-7 in Figure 6). For each rule r in the input rule set R (line 3) we compute

its aggregated rule r′ using the procedure AGGR ATTRS (lines 5-6).

The procedure AGGR ATTRS (lines 11-15) performs the aggregation of a set of attributes.

Using the mapping cutC , each element of an attribute set is aggregated in constant time.

Moreover, since the attribute set AttrSet is implemented as a hash table, an insertion of an

aggregated attribute into the resulting set A′ (line 13, inside the loop) also takes constant
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1 GROUP ( RuleSet R, Map cutC ) {
2 GroupSet G := ∅;
3 foreach r from R {
4 r′ := new Rule;
5 r′.body := AGGR ATTRS(r.body, cutC);
6 r′.head := AGGR ATTRS(r.head, cutC);
7 G := G ∪ r′;
8 }
9 return G;
10 }
11 AGGR ATTRS( AttrSet A, Map cutC ) {
12 AttrSet A′ := ∅;
13 foreach a from A { A′ := A′ ∪ cutC [a]; }
14 return A′;
15 }

Figure 6: Algorithm for similarity-based rule grouping.

time. Therefore, the total running time of the procedure AGGR ATTRS is linear in the size of

the attribute set.

As the result, the running time of a rule aggregation (lines 5-6) is linear in the size

of the rule (i.e., total number of attributes in the body and the head of the rule). Also,

since the group set GroupSet is implemented as a hash tree data structure (similar to the

one described by [Sri96]), an insertion of a group into the resulting group set G (line 7) is

also linear in the size of the rule. Consequently, the running time of the whole grouping

algorithm is linear in the total size of the rules to be grouped. Note also that, besides the

computational space needed to store the resultant rule groups, the algorithm uses virtually

no additional computational space (except for several local variables).

In summary, the grouping algorithm presented in Figure 6 scales up well, which is very

important for personalization applications dealing with very large numbers of rules.

There have been related approaches to rule grouping proposed in the literature [LSW97,

WTL98] that consider association rules in which both numeric and categorical attributes can

appear in the body and only categorical attributes in the head of a rule. However, [LSW97]

take a more restrictive approach by allowing only two numeric attributes in the body and

one categorical attribute in the head of a rule, whereas [WTL98] allow any combination of

numeric and categorical attributes in the body and one or more categorical attributes in

the head of a rule. Both of the approaches merge adjacent intervals of numeric values in a

bottom-up manner, where [LSW97] utilize a clustering approach to merging and [WTL98]

maximize certain interestingness measures during the merging process. It is interesting to
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observe that interval merging can also be supported in our rule grouping operator by letting

a domain expert specify the cuts at the value and aggregated-value levels of the attribute

hierarchy (as shown in Figure 5).

However, in order to allow the domain expert to validate very large numbers of rules

within a reasonable amount of time, personalization applications require more powerful

grouping capabilities that go beyond the interval merging techniques for attribute values.

Therefore, our approach differs from [LSW97, WTL98] in that it allows the grouping of rules

with different structures, at different levels of the attribute hierarchy and also not only for

numerical but for categorical attributes as well. Moreover, the domain expert has the flex-

ibility to specify the relevant cuts in the attribute hierarchy, whereas the interval merging

approaches do the merging automatically based on the built-in heuristics.

Still another related approach to grouping is proposed by [TKR+95] where a distance

between two association rules is defined as the number of transactions on which two rules

differ. Using this distance measure, [TKR+95] group all the rules into appropriate clusters.

One of the limitations of this approach lies in that the distance measures selected for rule

clustering are somewhat arbitrary. Moreover, it is not clear how to describe concisely the rule

cluster to the user for the purpose of evaluation, since rules belonging to the same cluster

may have substantially different structures. In contrast, in our proposed similarity-based

grouping approach every rule cluster is uniquely represented by its aggregated rule (common

to all rules in that cluster), that is concise and descriptive.

4.2 Template-based rule filtering

Another validation operator is template-based rule filtering that allows the expert to specify

in general terms the types of rules that he or she either wants to accept (accepting template)

or reject (rejecting template). After a template is specified, unvalidated rules are “matched”

against it. Rules that match an accepting template are accepted and put into user profiles,

and rules that match a rejecting template are rejected. Rules that do not match a template

remain unvalidated.

The formal definition of the template-based filtering operator is provided with the BNF

specification, the top-most fragment of which is presented in Figure 7. This specification

language allows one to define various constraints that the expert can impose on:

• The syntactic structure of the body (antecedent) and the head (consequent) of the rule.
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During the rule validation process, restrictions can be placed on combinations of at-

tributes and, possibly, their values that can appear in the rule using the following

set-like notation:

rule part set op { A1, A2, ..., AN }

where rule part can be either BODY, HEAD, or RULE, and it specifies the part of the

rule (antecedent, consequent, or the whole rule, respectively) on which the restriction is

being placed; set op is a set comparison operator, such as =, �=, ⊂, ⊆, ⊃, ⊇; {Ai}i=1..N

is a comparison set, i.e, a set of attributes to be compared (using set op) with the set

of attributes appearing in the rule part of each rule. This template matches the rules

for which set comparison yields true. For example, if rule part is BODY and set op

is ⊆ then this template matches the rules whose bodies have only the attributes from

the set {Ai}i=1..N . Moreover, the comparison set {Ai}i=1..N can be extended to include

not only attribute names, but also a value or a set of values that a given attribute

can have. In particular, each element of a comparison set can be described as Ai, or

Ai = val, or even Ai = { val1, val2, ... }.
Using hash-based data structures for storing rule templates, we can implement the

filtering algorithm that runs in time linear in the total size of the rules to be filtered.

• Basic statistical parameters of the rule. During the rule validation process, restrictions

on basic statistical parameters (e.g., support and confidence for association rules) can

be imposed using the following template:

STATS { par1 op1 val1, par2 op2 val2, ... }

where pari is the name of a statistical parameter (e.g., conf for confidence, supp for

support); opi is a comparison operator, such as >, ≥, <, ≤, =, �=; and vali is a value of

a statistical parameter. This template matches the rules, parameters of which satisfy

all the specified restrictions pari opi vali. Examples of such restrictions are conf < 80%

and supp ≥ 35%.

The computational complexity of this filter is linear in the number of rules since each

rule requires a constant time to check if it satisfies the constraint.
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• The factual information about a user for whom the rule was discovered. As mentioned

in Section 2.1, we assume that the factual information of each user can be stored

as a record in a relational table. Our template specification language allows one to

formulate a restriction on the factual information of users for the purpose of obtaining

only the rules that belong to this “restricted” set of users. Formally, such a template

is specified as follows:

FACTS { restriction }

This type of filter works in two steps. First, the following SQL statement that returns

a set of “qualifying” users (i.e., users that satisfy the restriction) is generated and

executed:4

SELECT UserId FROM FactualData WHERE restriction

And, second, the rule set is filtered to include only the rules of the users returned by

the SQL query described above.

In our template-based filtering operator, each of the above templates can be used indi-

vidually or several templates can be combined into one using boolean operations AND, OR,

and NOT. The filtering semantics of such a template combination is defined as follows. Rule

r matches template NOT T if r does not match T ; rule r matches template T1 AND T2 if r

matches both T1 and T2; finally, rule r matches template T1 OR T2 if r matches at least one

of T1, T2.

The proposed language is related to the data mining query languages, such as the ones

described in [KMR+94, SOMZ96, HFW+96, LHC97, SVA97, MPC98, IV99], among them M-

SQL [IV99] and the template language of [KMR+94] being the closest to our proposal. In this

paper, we enhanced and combined various features of these two languages into one integrated

language and included features arising from idiosyncrasies of personalization applications,

such as the existence of individual data mining rules and of factual information about the

users. Some examples of filtering operators are provided below.

1. Accept all the rules that refer to Grand Union stores:

ACCEPT : RULE ⊃ { Store = GrandUnion }
4Therefore, the syntax of the restriction element in the FACTS filter allows any expression that is

acceptable in the WHERE clause of an SQL SELECT statement.
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template → action : tmpl expression
action → ACCEPT | REJECT
tmpl expression → atom tmpl | atom tmpl logic oper tmpl expression
atom tmpl → inverse pos atom tmpl
logic oper → AND | OR
inverse → ε | NOT
pos atom tmpl → rule | stats | facts
rule → rule part set oper { trans term list }
rule part → BODY | HEAD | RULE
stats → STATS { stat term list }
facts → FACTS { fact term list }
set oper → = | �= | ⊂ | ⊆ | ⊃ | ⊇
trans term list → trans term | trans term, trans term list
trans term → attr term | aggr attr term
attr term → attr name | attr name compar oper value

| attr name = value set
stat term list → stat term | stat term, stat term list
stat term → stat name | stat name compar oper stat value
stat name → supp | conf
... ... ...

Figure 7: A fragment of the template specification language.

2. Reject all the rules that have attribute Product in the body (possibly among other

attributes) and the head of the rule has either DayOfWeek or Quantity = Big in it:

REJECT : BODY ⊇ { Product }
AND HEAD ⊂ { DayOfWeek , Quantity = Big }

3. Accept all the rules that involve any combination of attributes DayOfWeek (only when

value is Mon or Wed), TimeOfDay, and Product , in the body of the rule, that also

have confidence greater than 65%:

ACCEPT : BODY ⊆ { DayOfWeek = { Mon , Wed }, TimeOfDay ,
Product } AND STATS { conf > 65% }

4. Reject all the rules that have the attribute Product present in their bodies and, possibly,

DayOfWeek or TimeOfDay (but no other attributes besides these):

REJECT : BODY ⊇ { Product }
AND BODY ⊆ { DayOfWeek , TimeOfDay , Product }

5. Reject all the rules that refer to the purchase of a luxury car for the low-income users:

REJECT : RULE ⊇ { Product = LuxuryCar }
AND FACTS { YearlyIncome = Low }

6. The filtering operator can take advantage of an attribute hierarchy that was described

in Section 4.1 and was used in the similarity-based grouping operator. That is, aggre-

gated attributes and aggregated values can also be used in a template. For example, if
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we would like to accept all the rules that involve any type of discount in the body and

specify any spring month in the head (based on the attribute hierarchy from Figure 5),

we would use the following template:

ACCEPT : BODY ⊇ { DiscountType }
AND HEAD = { Month = spring }

As we have shown above, the template-based filtering operator is computationally inex-

pensive. Therefore, as with the similarity-based rule grouping operator, this operator also

scales well for very large numbers of rules.

4.3 Interestingness-based rule filtering

As described above, our proposed template-based rule filtering operator allows the domain

expert to accept or to reject the discovered rules based on their structure, statistical parame-

ters, and factual characteristics of the users. In addition to this, we propose using a filtering

operator that selects only the most “interesting” rules according to some interestingness

criteria.

There has been much research done in recent years quantifying “interestingness” of a rule,

and several metrics have been proposed and used as a result of this work. Among “objective”

metrics, besides confidence and support [AIS93], there are gain [FMMT96], variance and chi-

squared value [Mor98], gini [MFM+98], strength [DT93], conviction [BMUT97], sc- and pc-

optimality [BA99], etc. “Subjective” metrics include unexpectedness [ST96b, LH96, Suz97,

PT98] and actionability [PSM94, ST96b, AT97].

Any of these metrics can be used as a part of the interestingness-based filtering opera-

tor, and the validation system can support different interestingness criteria. Moreover, the

domain expert can specify interestingness-based filters using a syntax similar to the syntax

of the template-based filters. For example, the filter

ACCEPT : INTERESTINGNESS { gain > 0.5, unexpected }

specifies that all the high-gain and unexpected rules should be accepted. Moreover, the

uniform syntax for both template-based and interestingness-based filter specifications allows

to combine filters of both types into one. For example, the following template accepts all
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actionable rules that mention the purchase of a luxury car in the body of the rule:

ACCEPT : BODY ⊇ { Product = LuxuryCar }
AND INTERESTINGNESS { actionable }

We would like to point out that such interestingness-based filters can be added to the

profile validation system as external modules, thus making the system more versatile. The

efficiency of such interestingness-based filters depends on their inherent complexity (i.e.,

some interestingness measures are inherently more complex to calculate than others) and

their particular implementation.

Redundant rule elimination. One class of non-interesting rules are redundant rules. For

example, consider the association rule “Product = AppleJuice ⇒ Store = Grand Union

(supp=2%, conf=100%)” that was discovered for customer ALW392. This rule appears to

capture a specific aspect of the customer behavior: customer ALW392 buys apple juice only

at Grand Union, and we may add it to his behavioral profile. However, assume, that is was

also determined from the data that this customer does all of his shopping at Grand Union.

Then the above mentioned rule constitutes a special case of this finding.

The redundant rule elimination filter finds all the redundant rules and removes them

from the user profiles. In other words, this operator eliminates the rules that, by themselves,

do not carry any new information about the behavior of a user. One particular case of

redundancy occurs when the consequent Y of a high-confidence rule X ⇒ Y has a high

support. For instance, following the previous example, the rule “Product = AppleJuice ⇒
Store = GrandUnion (supp=2%, conf=100%)” would be removed from the profile of user

ALW392 and only the fact “Store = GrandUnion (supp=100%)” (i.e., this customer shops

only at Grand Union) will be kept.

The computational complexity of such redundant rule elimination filter is linear in the

number of rules to be filtered, because for each rule we only have to check whether its

consequent has a very high support measure. This check can be done in constant time using

a lookup table that holds a most frequent value of each attribute (along with its actual

frequency). There is no extra work needed to create such table, since it can be obtained as a

by-product of a rule discovery algorithm (e.g., Apriori) from the set of frequent 1-itemsets.

We implemented the redundant rule elimination operator described above as a part of the

validation system. However, we would like to point out that this redundant rule elimination

operator constitutes only one type of such operator, and that other types of such operators
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based on ideas presented in [AY98, BAG99, BA99, LHM99] can also be used in the rule

validation process.

4.4 Other Validation Operators

Although rule grouping and filtering proved to be the most useful and frequently used val-

idation operators as is demonstrated in Section 6, they can be complemented with various

other validation operators. We briefly describe some of these operators below.

• Visualization Operators. Allow the expert to view the set of unvalidated rules or

various parts of this set in different visual representations (histograms, pie charts, etc.)

and can give the expert insights into what rules are acceptable and can be included in

profiles.

• Statistical Analysis Operators. Statistical analysis operators can compute various

statistical characteristics (value frequencies, attribute correlation, etc.) of unvalidated

rules. This allows the expert to have many different “views” of these rules, therefore

helping him or her during the rule validation process.

• Browsing Operators. As mentioned above, visualization and statistical analysis

operators allow the expert to have “aggregated” views of the unvalidated rules through

various visual representations and statistical characteristics. Browsing operators, on

the other hand, can help the expert to inspect individual rules directly.

Browsing operators are especially useful when combined with the similarity-based

grouping operator described in Section 4.1. Instead of browsing through individual

rules and manually validating (accepting or rejecting) them on the one-by-one ba-

sis, the expert can apply the grouping operator and then browse the resulting groups

(aggregated rules) and manually validate the selected groups.

Browsing operators can have some additional capabilities, such as being able to sort

the content to be browsed in various ways. For example, it might be helpful for the

expert to be able to sort rules by the user ID or by some interestingness measure, sort

groups by their size, etc.
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5 Incremental Profiling

In most e-commerce applications user transactional histories usually change over time since

users continue their browsing and purchasing activities. Therefore, user behavioral profiles

usually change over time, and there is a need to keep these profiles current by removing be-

havioral rules that are no longer valid and adding new rules that characterize user’s emerging

behaviors.

A straightforward approach to maintaining user profiles would be to rebuild them peri-

odically “from scratch.” However, this is, clearly, a very computationally intensive and time

consuming process, especially since profiles often do not change significantly with new data.

An alternative approach would be to develop efficient incremental profile construction

techniques that would adjust user profiles based on the new data without rebuilding them

from scratch. One way to accomplish this would be to keep track of the sequence of all

the validation operations {Oi}i=1..N that were performed during the initial profile validation

process. Then, when new incremental data ∆D is added to the initial dataset D, the

previously used data mining algorithm can be applied to the dataset D ∪∆D to discover all

the new rules Rnew. After that, each of the previously used validation operators Oi can be

applied to the set of rules Rnew in the same sequence as they were applied during the initial

validation process. We would like to point out that this technique provides for automatic

incremental validation of user profiles without any additional participation of the domain

expert (until he or she decides to revisit the sequence of validation decisions).

Moreover, this incremental validation method can be improved further by using one of

the existing incremental rule discovery techniques [CHNW96, FAAM97, TBAR97] instead of

using the “from-scratch” rule discovery method considered before. Data monitoring triggers,

such as the ones proposed in [TS96, AT97], can also be used for this purpose.

6 Case Study

We implemented the methods presented in Sections 3 and 4 in the 1:1Pro system.5 The

1:1Pro system takes as inputs the factual and transactional data stored in a database and

generates a set of validated rules capturing personal behaviors of individual users following

the approach presented in Section 3 and illustrated in Figure 1. The 1:1Pro system can use

51:1Pro stands for One-to-One Profiling System.
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Validation Number of rules:
operator accepted rejected unvalidated

1. Redund. elimination 0 186,727 836,085
2. Filtering 0 290,427 545,658
3. Filtering 0 268,157 277,501
4. Filtering 6,711 0 270,790
5. Filtering 0 233,013 37,777
6. Grouping (1,046 gr.) 16,047 1,944 19,786
7. Grouping (6,425 gr.) 4,120 863 14,803

Final: 26,878 981,131 14,803

Figure 8: Example of a validation process for a marketing application: promotion sensitivity
analysis.

any relational DBMS to store user data and various data mining tools for discovering rules

describing personal behaviors of users. In addition, 1:1Pro can incorporate various other

tools that can be useful in the rule validation process, such as visualization and statistical

analysis tools as mentioned in Section 4.

The current implementation of 1:1Pro uses association rules to represent behaviors of

individual users. However, as pointed out before, our methods can support other types

of conjunctive rules. Also, the current implementation of 1:1Pro supports similarity-based

grouping, template-based filtering, redundant rule elimination, and browsing operators.

We tested 1:1Pro on a “real-life” marketing application that analyzes the purchasing

behavior of customers. The application included data on 1903 households that purchased

different types of beverages over a period of one year. The data set contained 21 fields

characterizing purchasing transactions, including the information about the time of purchase,

product purchased, amount spent, coupons used, and related advertisements seen. The whole

data set contained 353,421 records (on average 186 records per household). The data mining

module of 1:1Pro executed a rule discovery algorithm on the individual household data for

each of the 1903 households and generated 1,022,812 association rules in total, on average

about 537 rules per household. Minimal values for the rule support and confidence were set

at 20% and 50%, respectively.

Three case studies of user profile validation were performed for this application. In

the first case study, we performed promotion sensitivity analysis, i.e., analysis of customer

responses to various types of promotions, including advertisements, coupons, and various

types of discounts. As a part of this application, we wanted to construct customer profiles

that reflect different types of individual customer behaviors related to promotional activities.
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Since we are very familiar with this application, we assumed the role of the domain experts.

In the second case study, we performed seasonality analysis, i.e., we constructed customer

profiles that contain individual rules describing seasonality-related behaviors of customers,

such as the types of products that a customer buys under specific temporal circumstances

(e.g., only in winter, only on weekends) and the temporal circumstances under which a

customer purchases specific products. In the third case study, we asked a marketing expert

to perform the seasonality analysis from her point of view. To illustrate the validation

process, we describe the first case study in detail below. We also report the results from the

other two case studies in this section.

As mentioned above, we performed the role of experts in the promotion sensitivity anal-

ysis and validated the 1,022,812 discovered rules ourselves using the sequence of validation

operators presented in Figure 8. As shown in Figure 8, we first applied the redundant rule

elimination operator that examined the heads of all the rules and removed those rules whose

heads by themselves are “implied” by the data in the sense explained in Section 4.3. It

turned out that this operator rejected about 18% from the set of all the discovered rules,

namely 186,727. Then we applied the filtering operator (operator 2 in Figure 8) that rejects

all the rules with household demographics-related information in their heads. As a result

of this filtering operation, the number of unvalidated rules was reduced from 836,085 to

545,658. After that, we applied several additional filtering operators (operators 3, 4 and 5 in

Figure 8). One of them (operator 3) rejected rules where either body or head contains only

the market research company-specific attributes without any other information. Another

filtering operator (operator 4) accepted rules that state direct relationship between kinds of

products purchased and various promotions, i.e., rules that have product information (possi-

bly among other attributes) in the body and promotion-related information (discount, sale,

coupon used, or advertisement seen) in the head. Another filtering operator (operator 5)

rejected all the rules that do not have any promotion-related information in the body as well

as in the head of the rule. By applying all these filtering operators, we reduced the number

of unvalidated rules to 37,777. Then we applied two grouping operators, using the attribute

hierarchy, a fragment of which is presented in Figure 9. First, we applied grouping operator

using the cut presented in Figure 9(a) to get fewer, but more aggregated (therefore, less

descriptive) groups (operator 6 in Figure 8). This operator grouped the remaining 37,777

unvalidated rules into 1,046 groups, where the biggest group contained 2,364 rules and the
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Figure 9: Fragment of an attribute hierarchy used in a marketing application.

smallest group had just 1 rule in it. We inspected the 50 biggest groups and were able to

validate 38 of them (31 accepted and 7 rejected), which brought the unvalidated rule count

down to 19,786. We were unable to decide on whether to accept or reject the remaining 12

groups (out of 50) and left them as “undecided” for further analysis. Finally, we applied

another grouping operator (operator 7) to the remaining unvalidated rules using the cut

presented in Figure 9(b). We obtained 6,425 groups. The biggest group had 237 rules but

about 80% of groups contained 5 rules or less. Again, we inspected 50 biggest groups and

validated 47 of them (34 accepted and 13 rejected). As the result, we validated 4,983 more

rules.

We stopped the validation process at this point because there were no large groups that we

could validate as a whole and it started taking us more and more time to validate smaller and

less “understandable” groups. The whole validation process, including expert and computing

time, took about 1.5 hours,6 during which we validated 98.5% of the initially discovered rules

(only 14,803 rules out of 1,022,812 remained unvalidated). The total number of accepted

and rejected rules constituted 2.6% and 95.9% respectively of the initially discovered rules.

The total number of rules accepted and put into profiles was 26,878 (on average, about 14

rules per household profile).

We performed the validation process described above on all the 1,022,812 rules gener-

ated by the rule discovery algorithm. Alternatively, we could have specified constraints, for

example, using the methods proposed by [SVA97] or [BAG99], on the types of rules that

we are interested in prior to the data mining stage. As a result of this, fewer data mining

6This time includes several minutes of computing time and the remainder constitutes the time for the
expert to browse through the rules, think, and decide on the validation operators to be applied. This time
does not include rule discovery and the construction of attribute hierarchies.
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rules would have been generated, and there would have been no need to apply some of the

elimination filters described in this case study. For example, we could have specified the

constraints corresponding to the validation operators (1) and (2) in Figure 8 before applying

a rule discovery algorithm. As a result, we would have generated only 545,658 rules, all of

them satisfying these two conditions, and there would have been no need to apply validation

operators (1) and (2) in the post-analysis stage. Although very useful, the constraint speci-

fication approach cannot replace rule validation in the post-analysis stage of the knowledge

discovery process. We will elaborate on this further in Section 7.

In addition to the analysis of customer responses to promotions described in detail above,

we used the same set of discovered rules to perform another related market research task –

seasonality analysis. In particular, in the second case study, we constructed customer profiles

that contain individual rules describing seasonality-related behaviors of customers, such as

the types of products that a customer buys under specific temporal circumstances. It took

us about one hour to perform this task. As the result, we validated 97.2% of the 1,022,812

discovered rules, where 40,650 rules were accepted and 953,506 rules were rejected.

For the third case study, we asked a marketing analyst to perform seasonality analysis

with 1:1Pro. She started the analysis with applying redundant rule elimination and several

template-based filtering rejection operators to the rules (e.g., reject all the rules that are not

referring to the Season or the DayOfWeek attributes). After that, she grouped the remain-

ing unvalidated rules, examined several resulting groups, and then stopped the validation

process. At that point, she felt that there is nothing more to reject and decided to accept

all the remaining unvalidated rules.7 As a result, she accepted 42,496 rules (4.2% of all the

discovered rules) and spent about 40 minutes on the whole validation process.

The results of all the three case studies are summarized in Figure 10.

We received the following feedback from the marketing expert at the end of the validation

process. First, she liked the flexibility of 1:1Pro and the ability to apply a variety of validation

operators in the analysis. In particular, she liked our grouping and filtering operators, but

felt that we should provide better ways for presenting results, including certain visualization

capabilities. Second, we observed that her validation “style” was to keep rejecting groups

of irrelevant rules and accept all the remaining rules when there was nothing left to reject

further. Such style can be explained by the fact that the expert was only marginally familiar

7Although she accepted all the remaining rules, we personally felt that if she continued the validation
process she could have found some more “bad” rules.
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Number of rules Case Study I Case Study II Case Study III
Rejected 981,131 (95.9%) 953,506 (93.2%) 980,316 (95.8%)
Accepted 26,878 (2.6%) 40,650 (4.0%) 42,496 (4.2%)
Unvalidated 14,803 (1.5%) 28,656 (2.8%) 0 (0.0%)

Figure 10: Summary of case studies.

with 1:1Pro and did not utilize fully its capabilities to reject and accept groups of rules in

an interleaving manner. Third, we discussed the issue of the “quality” of the validated rules.

The marketing expert felt that the rule evaluation process is inherently subjective because

different marketing experts have different opinions, experiences, understanding the specifics

of the application, etc. Therefore, she believed that different marketing experts would arrive

at different evaluation results using the validation process described in this paper because

of the various biases that they have.

7 Discussion

The experiments performed on a medium-size problem (1903 households, 21 fields, and

1,022,812 discovered rules) reported in the previous section produced encouraging results:

based on the first case study, we managed to validate 98.5% of 1,022,812 rules in only 1.5

hours of inspection time. The results of this and other case studies produce several important

observations and raise several questions.

“Quality” of generated rules. One of the central questions is how “good” the profiles

are that were generated by the domain expert. In other words, would it be possible for

the domain expert to discard “good” and retain “bad” rules in the user profiles during the

validation process. As was pointed out in Section 1, the terms “good” and “bad” can take

different meanings, such as statistical validity, acceptability by an expert, and effectiveness.

Generating statistically valid rules is the prerogative of data mining algorithms and objective

interestingness metrics (as described in Section 4.3) that can be applied to the discovered

rules in the post-analysis stage. The problem of validating the rules by an expert was

considered in this paper. As was pointed out in Section 6, there is no single objectively

“correct” set of validated rules that the expert should be able to discover because different

experts have different evaluation biases. One possible approach lies in assigning a certain

metric to the rules and then measuring the quality of validated rules according to this

metric. For example, in the context of recommender systems, one can measure the quality
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of discovered and validated rules in terms of the quality of recommendations that these rules

generate.8 However, this approach deals with the rule effectiveness issues. As pointed out

in Section 1, the problem of generating effective rules has not been addressed in this paper

and is left as a topic of future research.

Scalability. Our experimental results demonstrate that 1:1Pro can handle medium-size

problems well. An interesting question is how well our approach would scale up to large

problems having millions of users and dozens of attributes. If the number of attributes

increases, then the rule mining methods, such as Apriori, will generate exponentially larger

number of rules and would constitute a bottleneck of the profile generating process (rather

than the rule validation phase). If the number of attributes is fixed and the number of

users grows, then an application of validation operators should scale up linearly with the

total number of users. This is the case, because, as demonstrated in Section 4, validation

operators run in time linear in the total size of the rules, and we observed that the number

of discovered rules grows linearly with the number of users.9

Constraint-based rule generation vs. post-analysis. In our experiments we applied a

rule discovery algorithm to generate all the association rules for pre-specified confidence

and support levels and then applied several filtering operators to remove “uninteresting”

rules from this set (e.g., as shown in Figure 8). Alternatively, we could have applied a

constraint-based version of association rule discovery methods, such as the ones presented

in [SVA97, BAG99]. As a result, we could have obtained the number of rules smaller than

1,022,812 produced by the unconstrained rule discovery algorithm.

Although the constraint-based approach reported in [SVA97, BAG99] provides a partial

solution to the validation problem by reducing the total number of rules generated during the

initial data mining stage, it does not provide the complete solution for the following reason.

It is very hard to figure out all the relevant constraints before the data mining algorithms

are launched. The human expert, most likely, will be able to come up with many important

filters only after inspecting data mining results using browsing, grouping, or visualization

operators. Alternatively, an expert can make a mistake and specify a filter that happens to

be too strict (i.e., rejects too many rules). If such constraint was specified before mining,

the whole rule discovery algorithm would have to be reexecuted with the correct constraint,

8In fact, we have started looking into this issue in [TA99] and are planning to conduct this research by
using recommender systems and judging the quality of profiles via the quality of resulting recommendations.

9Although we have not conducted rigorous experiments to prove this point.
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which is more computationally expensive than to reexecute a correct filtering operator in

the post-analysis phase. The benefits of iterative analysis of data mining results are also

pointed out by several researchers, including [FPSS96, ST96a, PJ98, LBA98, Sah99].

Therefore, neither the post-analysis nor the pre-specification of constraints works best as

a stand-alone method, and the two approaches should be combined into one integral method.

The main question pertaining to this combination is what kinds of constraints should be pre-

specified by the user for the rule generation phase and what functionality should be left for

the post-analysis phase. This topic was addressed by several researchers within the rule

discovery context [PJ98, GVdB99]. We are currently working on extending this line of work

to the personalization problem.

Examination of groups of rules. One of the main features of our approach is the ability

for the domain expert to examine groups of rules and to decide whether to accept or reject a

group as a whole. One of the concerns for such method is that the domain expert can make

mistakes by accepting “bad” and rejecting “good” rules. This issue is addressed in 1:1Pro

by providing the capability for the domain expert to evaluate a group of rules recursively in

case the expert is unable to decide whether or not to accept or reject this group as a whole.

In other words, the expert can apply validation operators just to this particular group of

rules and examine its subgroups. By examining smaller subgroups, the expert can then make

more reliable decisions.

Future research. This paper opens several directions for future work. One of such di-

rections includes studies of measures of effectiveness of discovered rules and development of

efficient algorithms for discovering such rules. Moreover, the marketing expert pointed to

us that some additional validation operators should be added to our system, and we plan to

work on this issue. Finally, we plan to study tradeoffs between constraint-based generation

and post-analysis of rules in the context of personalization applications.
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