
REQUEST: A Query Language for Customizing Recommendations

Gediminas Adomavicius
Department of Information and Decision Sciences

Carlson School of Management
University of Minnesota
gedas@umn.edu

Alexander Tuzhilin

Information, Operations & Management Sciences Department
Stern School of Business

New York University
atuzhili@stern.nyu.edu

Rong Zheng

Department of Information Systems, Business Statistics and Operations Management
School of Business and Management

Hong Kong University of Science and Technology
rzheng@stern.nyu.edu

Abstract

Initially popularized by Amazon.com, recommendation technologies have become widespread over the

past several years. However, the types of recommendations available to the users in these recommender

systems are typically determined by the vendor and therefore are not flexible. In this paper we address

this problem by presenting the recommendation query language REQUEST that allows users to customize

recommendations by formulating them in the ways satisfying personalized needs of the users. REQUEST

is based on the multidimensional model of recommender systems that supports additional contextual

dimensions besides traditional User and Item dimensions and also OLAP-type aggregation and filtering

capabilities. The paper also presents a recommendation algebra, shows how REQUEST

recommendations can be mapped into this algebra, and analyzes the expressive power of the query

language and the algebra. The paper also shows how users can customize their recommendations using

REQUEST queries through a series of examples.

Keywords: personalization, recommender systems, recommendation query language, multidimensional

recommendations, contextual recommendations, recommendation algebra.

 1

1. Introduction
Recommender systems represent an important class of personalization technologies that help users to deal

with information overload in e-commerce and numerous other applications. There has been much work

done in the area of recommender systems over the past decade since the introduction of the first papers on

the subject [13, 22, 23], especially after these technologies were popularized by Amazon and Netflix, as

well as after the establishment of the $1,000,000 Netflix Prize Competition that attracted over 45,000

contestants from 180 countries [6]. A survey of the rapidly growing field of recommender systems can be

found in [3].

Most of the work in recommender systems focuses on a two-dimensional paradigm of recommending

items to users or users to items (e.g., books to customers or customers for books). Although there are

different types of approaches to deriving recommendations, including the ranking- [11] and market-

basket-analysis-based [19], the majority of the academic work in recommender systems and

implementations of commercial systems, including Amazon and Netflix, focuses on the rating-based

approach [3], where recommendations use explicit or implicit ratings provided by the end-users.

Rating-based approaches are usually classified into content-based, collaborative, and hybrid [7]. In

content-based recommendation methods, rating R(u,i) of item i for user u is typically estimated based on

the ratings R(u,i') assigned by the same user u to other items i' that are “similar” to item i in terms of their

content. For example, in order to recommend movies to user u, the content-based approach tries to

understand user preferences by analyzing commonalities among the content of the movies user u has rated

highly before. Then, only the movies that have a high degree of similarity with customer’s past

preferences are recommended.

Collaborative recommender systems try to predict rating R(u,i) of item i for user u based on how

other “similar” users u' previously rated item i. Here “user similarity” is defined in terms of the distance

between the ratings users u and u' assigned to the items that both of them rated, the most popular types of

distance metrics being correlation- and cosine-based measures between two rating vectors [3]. Then

collaborative filtering methods recommend those items to the user that she has not rated yet and that were

 2

highly rated by the similar users.

Content and collaborative methods can be combined into a hybrid approach in several different ways

[7, 8]. One popular way to combine them is by learning and maintaining user profiles based on the

content analysis of the items preferred by the users, and then directly comparing the resulting profiles to

determine similar users in order to make collaborative recommendations. Other types of hybrid methods

are also possible and are described in [3, 8].

Although the traditional two-dimensional user/item paradigm described above is suitable for some

applications, such as recommending books and music CDs, it is significantly less suitable for the

“context-rich” applications, such as traveling or shopping applications. For example, when

recommending vacations to travelers, one would likely recommend a different vacation to a customer in

the winter than in the summer, i.e., the time-of-travel context is clearly important when making

recommendations. Similarly, when recommending groceries, a “smart” shopping cart [27] needs to take

into account not only information about products and customers, but also such information as shopping

date/time, store, who accompanies the primary shopper, products already placed into the shopping cart,

and its location in the store. Clearly, the two-dimensional paradigm of classical recommender systems is

less suitable for these applications.

To provide better recommendations in such contextually rich applications, one may need to consider

other dimensions besides Item and User. For example, when a movie recommendation provider (such as

Netflix) recommends movies, it may also want to consider such additional dimensions as Time when the

movie was seen, Company in which the movie was seen (e.g., alone, with friends, parents, etc.), and Place

in which it was seen (e.g., in the theater or at home). A completely different movie may be recommended

by a movie recommendation provider to a student when he wants to see it on a Saturday night with his

girlfriend in a movie theater than when he wants to see it on Thursday evening with his parents at home.

In [4, 5] we proposed a new multidimensional approach to recommender systems where we incorporated

multiple dimensions and the OLAP-based cubes of ratings into the recommendation model. To estimate

missing ratings in multidimensional cubes, we proposed the reduction-based method in [4] and the

 3

heuristic-based and model-based methods in [2].

However, the multidimensional approach described in [4] and the classical two-dimensional

recommendation methods have one significant limitation in common. These methods are hard-wired by

the developers into the recommender systems, are inflexible and limited in their expressiveness, and,

therefore, neglect some possible needs of the users. For example, a typical recommender system would

recommend the top k items to a user, or the best k users for a product. This situation is quite limited,

especially in multidimensional settings, where the number of possible recommendations increases

significantly with the number of dimensions [5]. Therefore, there is a need to empower end-users and

other stakeholders by providing them with the tools for expressing recommendations that are of interest

to them [3, 16]. For example, Jane Doe may need a recommendation for the best two dates to go on

vacation to Jamaica with her boyfriend. Also, Netflix or an on-demand movie service, such as provided

by the Time Warner Cable, can envision a web-based interface to a multidimensional cube of ratings that

lets the users express the recommendations that are of interest to them or automatically tailors

recommendations based on a given context, such as the time of day or the day of week. For example, a

certain user (e.g., Tom) may seek recommendations for him and his girlfriend of top 3 movies and the

best times to see them over the weekend, and he enters this request into the recommender system via the

web-based interface. Such query-based recommendation applications are not limited to on-demand

movies, but are relevant to a broad range of recommendation applications, including retailing, financial,

travel, and other applications. Furthermore, we believe that flexible recommendation capabilities would

be appealing to a variety of different users, and not just to the end-users who are direct recipients of

recommendations. For example, such functionality would be useful to the analysts of a company

providing recommendation services, who may want to take advantage of all the knowledge that their

recommender system holds and analyze it from a variety of different perspectives (“show me the top 2

movie genres for each user age bracket”, etc.). Alternatively, an agent in a call center can use such a

system to recommend the best plans and services to the customers of a telecommunications company.

One tool for expressing such requests is a recommendation language that is similar to how database

 4

users use query languages to retrieve information from databases. In fact, one may try to use the popular

database query language SQL for this purpose, and the above mentioned recommendation for Tom and

his girlfriend can be specified in SQL as

SELECT R.MovieId, R.TimeId, R.UserId, R.CompanionId, AVG(R.PersonalRating)
FROM MovieRecommender R, User U, Time T, Companion C
WHERE R.UserId = U.UserId AND R.TimeId = T.TimeId AND R.CompanionId = C.CompanionId

AND U.Name = “Tom” AND T.TimeOfWeek = “weekend” AND C.Type = “Girlfriend”
GROUP BY R.MovieId, R.TimeId, R.UserId, R.CompanionId

where User and Companion are the relations storing information about customers and different types of

companions, MovieRecommender is the ratings table, and Time is the temporal dimension table.

Although “doable,” this SQL query and, more generally, SQL at large would have the following problems

when used for recommendation purposes. First, notice that SQL does not exactly provide the requested

recommendation: it returns the list of tuples (movies, times to see them, users, etc.), but does not specify

what is recommended to whom and does not provide the top 3 recommended movie/time pairs. More

generally, as it will be shown in the paper, recommendations are not really queries according to the

standard meaning of this term since, generally, recommendations represent very idiosyncratic outputs that

cannot be expressed in SQL. Second, SQL is a comprehensive, general-purpose database query language

and, therefore, many of the possible SQL queries do not represent recommendations. Therefore, in order

to help the end-user formulate recommendations correctly and meaningfully, one may want to impose

elaborate constraints on SQL to be able to restrict the language for the recommendation task. However,

the development of a simple, elegant, and intuitive system of such constraints for SQL constitutes a very

hard problem. A better alternative would be to introduce a language that is directly defined on top of the

“native” multidimensional recommendation model. Third, the above SQL query is fairly cumbersome: it

constitutes a join of four relational tables, has 6 conditions in the WHERE clause, has the GROUP BY

statement and the aggregation function AVG. Clearly, there should be a better and more intuitive way to

express this simple type of recommendation, and this observation served as a direct motivation for

developing a special-purpose recommendation language. This necessity to replace cumbersome SQL

queries with more elegant and intuitive formulations grows substantially for the significantly more

 5

complex recommendations, such as the ones that will be presented in Section 3. Fourth, this

cumbersomeness may have not only a cognitive effect on the users writing queries, but could possibly

also affect query performance in some cases, since processing multiple join queries can be a very time-

consuming operation. In summary, the above issues can be attributed to the task and model mismatch.

SQL is a general-purpose query language, which makes it a less intuitive and a less useful tool for users in

the “vertical” application domain of recommender systems, where SQL may not have some specialized

capabilities important for recommender systems. Also, SQL is based on the relational data model, and

multidimensional recommendations on the multidimensional model [4] would need to be mapped into the

relational model to support SQL queries, which leads to various translation problems. To avoid these

issues, it is advantageous to develop a specialized (“vertical”) query language based on the idiosyncratic

characteristics of the domain of recommender systems that supports the multidimensional

recommendation model and has the constructs which are directly suited for recommendation applications.

In this paper we follow this approach and present a new recommendation query language REQUEST1

that allows its users to express in a flexible manner a broad range of recommendations that are tailored to

their own individual needs and, therefore, more accurately reflect their interests. For example, the earlier

recommendation for Tom can be expressed in REQUEST as

RECOMMEND Movie, Time TO User, Companion
USING MovieRecommender
RESTRICT User.Name = “Tom” AND Time.TimeOfWeek=“weekend” AND Companion.Type = “Girlfriend”
BASED ON PersonalRating
SHOW TOP 3

where MovieRecommender is a 5-dimensional cube of ratings having dimensions User, Movie, Time,

Companion, and Theater; also, PersonalRating represents the ratings measure for the cube.

The above REQUEST query is based on the OLAP paradigm [10], which is a natural choice for

1 REQUEST is an acronym for REcommendation QUEry STatements. The initial version of our recommendation
query language, called RQL, was introduced in an earlier workshop paper [5], where only the preliminary ideas of
how to define the query language were presented. In this paper, we systematically redesigned the language by
formally introducing its syntax, semantics, and the corresponding recommendation algebra. This allowed us to
significantly extend capabilities of the language over its preliminary version [5]. To reflect these major changes, we
renamed the language from RQL to REQUEST.

 6

querying multidimensional recommender systems, since the data model of REQUEST matches the

multidimensional data model of the ratings cube. Besides REQUEST, we also present a multidimensional

recommendation algebra that is used for defining certain “core” parts of REQUEST queries. We also

describe how these core REQUEST queries can be processed by mapping them into this algebra.

This paper makes the following contributions. It proposes language REQUEST for expressing

flexible user-driven recommendations and presents its syntax and semantics. It also presents

recommendation algebra RA, which complements a formal definition of REQUEST. We also show how

the core REQUEST queries can be mapped into RA, thus providing a way to process these queries, and

compare the expressive power of REQUEST and RA.

2. Background: Multidimensional Recommender Systems
Taking into account some of the conventions for defining OLAP cubes [25], we define a

multidimensional ratings cube as a tuple (D, M, H, E, L) as follows.

Dimensions (D). D = {d1, d2, …, dn} is a set of n dimensions, where each di is a dimension name. For

example, in addition to the standard User and Movie dimensions of the traditional movie recommender

systems, such as MovieLens [20], we consider other contextual dimensions [4, 5], such as Time, Theater

and Companion., i.e., D = {User, Movie, Time, Theater, Companion}.

Attribute Hierarchies (H). Each dimension di is represented by a set of attributes Ai={ai1, …, ait} where

each aij is an attribute name; e.g. Atime={Date, DayOfWeek, TimeOfWeek, Month, Quarter, Year}. The

domain of attribute x of dimension d is denoted as dom(d.x), e.g., dom(Time.DayOfWeek) = { Mon, Tue,

Wed, Thu, Fri, Sat, Sun } and dom(Time.TimeOfWeek) = { weekday, weekend }.

The multidimensional recommendation model allows for OLAP-based aggregation hierarchies [4, 5]

that help aggregate ratings according to the methods described in [4]. In particular, attributes Ai of

dimension di form a directed acyclic graph (i.e., a hierarchy) Hi = (Ai, Ei) with set of nodes Ai (i.e., each

node corresponds to an attribute) and set of edges Ei. There exists a directed edge in Hi from attribute x ∈

Ai to attribute y ∈ Ai, if and only if every value of x uniquely determines the value of y, i.e., if attribute y is

functionally dependent on attribute x. Such an edge will be denoted (x, y) or x y. We will assume that Hi

 7

has a single root node, Root(Hi), which we will call the key dimension attribute, consistent with the

standard database terminology. Let H = { H1, …, Hn }.

Given hierarchy Hi and attribute di.x ∈Ai, we define SubGraph(Hi, di.x) to be a subgraph of Hi rooted

at di.x, i.e., it defines the graph containing all the nodes and edges reachable from di.x.

Elements (E). Each dimension di in a cube is represented by a set of elements Ei. For instance,

dimension Movie in our example is represented by all the movies available for the users to rate. For

simplicity and without loss of generality, we use the domain of the key dimension attribute to represent

the set of elements of di, i.e., Ei := dom(Root(Hi)). An example of the elements’ set for the User

dimension would be a set of all user IDs available in the data. Let E = { E1, …, En }.

Measures (M). M = {m1, m2, …, mk} represents a set of measures, where each mi is a different type of a

rating from domain dom(mi). The measures can either be numeric or Boolean. A numeric measure

usually represents a discrete finite ordered value, e.g., a movie rating on the scale of {1, …, N}. A

Boolean measure can be used to represent a “status flag” denoting the state of a rating or its specific

characteristic, e.g., indicating whether a given movie has been seen by a given user.

Example 1. Consider the application for recommending movies to users that has the following

dimensions, each dimension defined by the attributes specified in parentheses:

• Movie: the set of all the movies that can be recommended; it is defined as Movie(MovieID,

Title, Length, ReleaseYear, Director, Genre).

• User: the people to whom movies are recommended; it is defined as User(UserID, Name,

Address, Age, Gender, Profession).

• Theater: the movie theaters showing the movies; it is defined as Theater(TheaterID, Name,

Address, Capacity, City, State, Country).

• Time: the time when the movie can be or has been seen; it is defined as Time(Date,

DayOfWeek, TimeOfWeek, Month, Quarter, Year).

• Companion: represents a person or a group of persons with whom one can see the movie. It

is defined as Companion(companionType), where attribute companionType has values

“alone”, “friends”, “girlfriend/boyfriend”, “family”, “co-workers”, and “others”.

We also use three rating measures in this example: PublicRating, a numeric measure specifying

how much the general public liked the movie; PersonalRating, a numeric measure specifying how

 8

much a particular person liked or is predicted to like the movie in the settings specified by the

Time, Theater, and Companion dimensions; and Consumed, a Boolean measure specifying

whether or not a given user has actually seen a given movie in a given context. The

PersonalRating assigned to a movie by a person depends on where and how the movie has been

seen, with whom and at what time. Finally, we consider the following aggregation hierarchies:

Movie: MovieID Genre; User: UserID Age, UserID Gender, UserID Profession;

Theater: TheaterID City State Country; Time: Date DayOfWeek TimeOfWeek,

Date Month Quarter Year.

Cube Cells (L). Each cube is a partially defined rating function R from an n-dimensional space of E1 × …

× En to a k-dimensional space of measures, i.e., R: E1 × …× En → dom(m1) × … × dom(mk). Alternatively,

a cube can be perceived as a set of cells L, each cell l ∈ L consisting of the tuple (address, content), i.e., l

= (address, content), where address = (α1, …, αn), αi ∈ Ei, and content = (b1, …, bk), bi ∈ dom(mi). Since

the mapping R is partial, content can also have value NULL for some cells. We also use the notation

L[address] = content to refer to a specific cell, and L[address].mj to refer to a specific measure within a

cell. Furthermore, the ratings R(α1, …, αn) of the recommendation space S = E1× E2× …× En are either

explicitly provided by the users or are implicitly inferred by the system as described below. For example,

R(Aviator, Jane, theater5, 2/19/2005, boyfriend) = (6, 8, True) means that Jane gave rating 6 (i.e.,

PersonalRating = 6) to “Aviator” that she actually saw (i.e., Consumed = True) with her boyfriend on

February 19, 2005 in movie theater 5, but the general public gave the movie the rating of 8 (i.e.,

PublicRating = 8).

Given these preliminaries, the recommendation problem is defined as follows. First, the system needs

to estimate the unknown ratings and make the rating function R total [4]. Second, to make a

recommendation, one needs to select certain non-overlapping “what” dimensions di1, …, dik (k < n) and

certain “for whom” dimensions dj1, …, djl (l < n) and, accordingly, recommend for each tuple (αj1, …,

αjl)∈ Ej1×…×Ejl tuple (αi1, …, αik)∈ Ei1×…×Eik maximizing the rating R(α1,…, αn) across all the tuples

(α1,…, αn) coinciding with (αj1, …, αjl)∈ Ej1×…×Ejl on corresponding dimensions dj1,…,djl.

 9

Since the rating cube is only partially filled, it is important to estimate the unspecified ratings for

recommendation purposes. This multidimensional rating estimation problem is addressed in [4], where

the reduction-based method of estimating unknown ratings in terms of the known ratings is presented. To

understand how it works, assume that we want to recommend a movie to Jane Doe who wants to see it

with her boyfriend on Saturday in a movie theater. If the Time dimension is partitioned into weekend and

weekday components and since Saturday falls on a weekend, the reduction-based approach uses only the

ratings for the movies seen on weekends by customers with their boyfriends/girlfriends in the movie

theaters in order to provide recommendations for Jane Doe. It was shown that this approach outperforms

the standard collaborative filtering in multidimensional settings under certain conditions [4]. Alternative

multidimensional rating estimation methods include heuristic- and model-based approaches [2].

In this paper we focus on the querying capabilities of the REQUEST language and, therefore, we

assume that the multidimensional ratings cube is fully pre-computed before users start issuing

recommendation queries. In other words, we assume that all the unknown ratings have been estimated

using any of the aforementioned rating estimation techniques. How to perform rating estimation “on

demand” based on the query that was issued on a partially filled ratings cube constitutes an interesting

future research problem, as we mention in Section 6.

The work described in [4] focuses on presenting the multidimensional recommendation model and

does not specify how to express a wide variety of recommendations that are possible in multidimensional

settings. In the next section we address this limitation by presenting the query language REQUEST for

expressing such recommendations.

3. Recommendation Query Language REQUEST
In this section, we describe the language by providing various examples of REQUEST queries in Section

3.1, then present its syntax in Section 3.2 and semantics in Section 3.3.

3.1. Introducing REQUEST via Examples
All the examples presented in this section are based on the 5-dimensional MovieRecommender schema

from Example 1. The first example presents the most basic and traditional recommendation request.

 10

Query 1: Recommend the best movies to users:
RECOMMEND Movie TO User
USING MovieRecommender
BASED ON PersonalRating

In this query, the RECOMMEND and TO clauses specify that movies will be recommended to users.

The USING clause specifies the name of the multidimensional rating cube. The BASED ON clause

specifies that personal ratings are used for recommendation purposes. The movies in this query are

ordered separately for each user based on the PersonalRating measure that is either provided by the user

or estimated from the set of known ratings as mentioned in Section 2. The query returns the highest-rated

movie for each user. Query 1 actually uses some defaults, and the equivalent query with the explicitly

specified parameters is:

RECOMMEND Movie (MovieID) TO User (UserID)
USING MovieRecommender
BASED ON PersonalRating(AVG)
SHOW TOP 1 BY PersonalRating

Qualifier AVG specifies that, when the MovieRecommender cube is reduced to two dimensions

Movie and User, all the ratings of a movie seen by a user on different occasions are aggregated by

averaging their values (note that the user could see or rate the same movie more than once across different

contexts). Each measure can have its own default aggregation function (e.g., AVG in this case). The

SHOW TOP k clause returns k best movies for the user ordered by aggregated PersonalRating measure

(by default, k = 1). MovieID and UserID represent the dimensional attributes that will be used when

displaying the results.

Next we introduce the restrictions on the recommendation criteria.

Query 2: Recommend, using personal ratings, top 5 action movies to users older than 18.
RECOMMEND Movie TO User
USING MovieRecommender
RESTRICT Movie.Genre = “Action” AND User.Age >= 18
BASED ON PersonalRating(AVG)
SHOW TOP 5 BY PersonalRating

The RESTRICT clause is used to select the movies and the users satisfying the selection criteria.

 11

Then only the selected movies are ordered for each selected user based on the instructions specified in the

BASED ON and the SHOW clauses, as discussed above. As this and other examples show, the syntax of

REQUEST differs from that of SQL. This is done on purpose to reflect significant differences between

the application domains these languages are meant for. We discuss this further in Section 3.2.

We next show how ratings are filtered using the POSTFILTER clause.

Query 3: Recommend top 5 movies to the user for the weekend but only when personal ratings of the
movies are higher than 7 (if fewer than 5 movies satisfy these criteria, then show only those satisfying
them).

RECOMMEND Movie TO User
USING MovieRecommender
RESTRICT Time. TimeOfWeek =”weekend”
BASED ON PersonalRating(AVG)
POSTFILTER PersonalRating > 7
SHOW TOP 5

Query 3 demonstrates that different clauses (RESTRICT and POSTFILTER) are used for the

selections of attributes and ratings. First, only the weekend ratings are selected with the RESTRICT

clause. Then they are aggregated using the “BASED ON PersonalRating (AVG)” clause. Only then the

POSTFILTER clause is applied to these aggregated PersonalRatings and only those greater than 7 are

selected. If we want to restrict non-aggregated ratings, we should use the PREFILTER clause, as will be

shown in Query 5. The reasons for using separate RESTRICT and POSTFILTER clauses when

restricting attributes and ratings are discussed in Section 3.2.

The next example shows that more than one dimension can be used in recommendations, i.e., Movie

and Time are recommended to User and Companion.

Query 4: Recommend to Tom and his girlfriend top 3 movies and the best times to see them over the
weekend.

RECOMMEND Movie, Time TO User, Companion
USING MovieRecommender
RESTRICT User.Name = “Tom” AND Time.TimeOfWeek =”weekend” AND Companion.Type = “Girlfriend”
BASED ON PersonalRating
SHOW TOP 3

Sometimes, a certain group of people may be interested in a certain type of movies. For example,

there has been work done on the topic of recommending to groups of users [14] as well as using aggregate

 12

ratings in the recommendation process [26]. The next example shows how this type of aggregation can be

done in REQUEST.

Query 5: Recommend movie genre to various professions using only the movies with personal ratings
bigger than 6:

RECOMMEND Movie.Genre TO User.Profession
USING MovieRecommender
PREFILTER PersonalRating > 6
BASED ON PersonalRating(AVG)

This query aggregates rating scores for individual movies into averaged rating scores for different

genres of movies. Also, individual users are aggregated by profession, and each profession becomes a

new target for a recommendation. Before the ratings are aggregated, the PREFILTER operator selects the

ratings bigger than 6, and only these ratings are aggregated. It differs from the POSTFILTER operator in

Query 3 since it deals with non-aggregated ratings, whereas POSTFILTER is applied to the aggregate

ratings. This distinction is crucial in some recommendation settings.

The next example demonstrates that recommendations are not restricted to the User dimension; in

general, different things can be recommended to various objects.

Query 6: Identify the top two professions that appreciate the movie “Beautiful Mind” the most.
RECOMMEND User.Profession TO Movie
USING MovieRecommender
RESTRICT Movie.Title = “Beautiful Mind”
BASED ON PersonalRating(AVG)
SHOW TOP 2

Remember that a rating score for a movie is either explicitly specified by the user or is estimated from

the existing user-specified ratings using one of the rating estimation methods described in [2, 4]. The

next query is a modification of Query 1 that makes use of this fact.

Query 7: Recommend best movies to users that they have not seen yet.
RECOMMEND Movie TO User
USING MovieRecommender
BASED ON PersonalRating(AVG), Consumed(DISJ)
POSTFILTER NOT(Consumed)
SHOW TOP 1 BY PersonalRating

 13

This query collects all the ratings given to a movie by a user (note that the user can provide multiple

ratings to a movie, seen in different contexts). Consumed is a Boolean flag related to PersonalRating

measure specifying whether a movie was seen (“consumed”) by a user on some occasion.

Consumed(DISJ) is the disjunction of the values of all of these flags for a movie/user pair. If this

disjunction is true (the cumulative Consumed flag is True), this means that on at least one occasion the

user has seen the movie. The POSTFILTER NOT(Consumed) statement removes these cases. Thus, only

the movies that the user has not seen before are recommended.

The next query shows how recommendations based on multiple ratings are used.

Query 8: Show top 5 movies with both public ratings and personal ratings bigger than 8 to students based
only on the movies they have seen.

RECOMMEND Movie To User
USING MovieRecommender
RESTRICT User.Profession = “Student”
PREFILTER Consumed
BASED ON PersonalRating(AVG), PublicRating(AVG)
POSTFILTER PublicRating > 8 AND PersonalRating > 8
SHOW TOP 5 BY PersonalRating, PublicRating

This query first selects the ratings of movies provided by students that they have previously seen (i.e.,

prefilters them based on the Consumed flag). Then it aggregates them based on personal and public

ratings and selects only PublicRating and PersonalRating that on average are greater than 8. Finally, it

sorts the movies for each user based on these two ratings in a standard lexicographic manner and selects

the top five of them for each user.

Since ratings in a recommender system can be provided by users or estimated by software, note that

we have an option of differentiating between actual, estimated, and other types of ratings for any rating

measure. The REQUEST language supports this functionality via binary flags (implemented as separate

Boolean measures) that can be used in PRE- and POSTFILTER clauses, as well as be aggregated using

specific Boolean aggregation functions. For example, Queries 7 and 8 use the Consumed flag specifying

if the rating is based on the movie that the user has actually seen. This is possible because, as explained

earlier, all the estimated ratings and the related flags are precomputed, and thus can be used conceptually

 14

as additional measures.

After introducing REQUEST via examples, we next define the syntax of the language.

3.2. Syntactic Definition of REQUEST
We have developed REQUEST as a “vertical” query language for the specific domain of recommender

systems. Following this approach, we tried to make sure that every construct of the language has a well-

defined and intuitive meaning pertaining to recommender systems, while at the same time trying to

maintain expressiveness and rigor of the language.

The BNF specification of REQUEST syntax is presented in Figure 1. First, note that we do not

mimic the syntax of SQL for REQUEST because, if we tried to do so, this would likely cause many false

assumptions on behalf of the users who may assume that properties of SQL operators automatically

extend to REQUEST simply because the names of the operators are the same. For example, the

RESTRICT clause of REQUEST is significantly more restrictive than the WHERE clause of SQL, as will

be explained below. This observation is also applicable to various other REQUEST clauses that will be

discussed later in this section.

As Figure 1 shows, the USING clause allows only a single cube, thus restricting recommendations to

a single cube of ratings and prohibiting joins between cubes in REQUEST. We made this restriction

because multi-cube recommendations seldom have meaningful and practically important applications and

also can lead to various complications and side-effects. For example, in order to join two cubes on a

certain dimension, such as Time, the two dimensions should be identical for all the levels of the

aggregation hierarchy, e.g., across the entire Time hierarchy, which is often impractical and also difficult

to enforce. Also, if multiple cubes are used in queries, then there is a dilemma of whether the PUSH and

PULL operators of the standard OLAP querying paradigm [1], that can “push” one of the dimensions to

become a measure and also “pull” a measure as a new dimension, should be supported at the algebraic

level. Without such operators incorporated into REQUEST, certain multi-cube queries either cannot be

expressed or can be done only in a very convoluted manner. At the same time, incorporating the PUSH

and PULL operators into the language creates numerous complications for REQUEST due to the inherent

 15

semantic differences between dimensions and measures in the multidimensional recommendation model.

Therefore, having multiple cubes creates various problems both with and without the PUSH and PULL

operators in REQUEST. Finally, when joining cubes, estimated ratings need to be re-evaluated for the

joined cubes, often in significantly higher-dimensional spaces. This can lead to the rating estimation

problem due to the rating sparsity in the joined cube. Instead of supporting joins in REQUEST, a much

better alternative is for the domain expert to manually build a single cube from two or more individual

cubes. In the rest of this section we describe the syntax of REQUEST based on Figure 1.

The RESTRICT clause contains dimension_restrictions that constitute the standard restrictions of the

“slice-and-dice” operator of the OLAP systems. Each individual restriction is limited to the numeric and

textual comparison of a dimension attribute to a constant value (or a set of values), as specified in the

BNF grammar above, and these dimensions and attributes have to be present in the schema of the

cube_name cube. Moreover, multiple restrictions in a single RESTRICT clause are permitted, but only if

combined by logical operator AND. Disjunctions (OR) are not allowed because the result of such

restrictions would no longer be a multidimensional cube, as illustrated in Figure 2.

We also would like to note that, although the RESTRICT clause is somewhat similar to the WHERE

clause of SQL, they also have the following key differences mostly stemming from our need to restrict

REQUEST to make it more suitable for the recommendation applications. First, the WHERE clause of

SQL is not limited to conjunctions, as RESTRICT is, but can also have disjunctions. Second, each

individual restriction (conjunct) in the RESTRICT clause can involve only one dimension (i.e., a

comparison of some dimension attribute to a constant, as mentioned earlier) in order to ensure that the

result of the restriction is still a proper multidimensional cube. For this reason, for example, the

restriction “RESTRICT User.Age > Movie.Length” is not allowed in REQUEST. In contrast, the

WHERE clause of SQL allows having attributes from multiple relations in a single condition. Third, the

WHERE clause of SQL supports nested queries, whereas RESTRICT does not. Besides these major

differences between the two clauses, there are also minor differences apparent from the BNF grammars of

the two languages.

 16

// general syntax of a REQUEST query
REQUEST_query ::=

RECOMMEND recommend_dim_list TO recipient_dim_list
USING cube_name
[RESTRICT dimension_restrictions]
[PREFILTER preaggregation_measure_restrictions]
BASED ON aggr_measure_list
[POSTFILTER postaggregation_measure_restrictions]
[SHOW measure_rank_restriction]

// RECOMMEND and TO clauses
recommend_dim_list ::= dimension_list
recipient_dim_list ::= dimension_list
dimension_list ::= single_dimension { , single_dimension }*
single_dimension ::= { dimension_name [output_attribute_list] | dimension_attribute }
output_attribute_list ::= (attribute_name { , attribute_name }*)

// USING clause
cube_name ::= variable

// RESTRICT clause
dimension_restrictions ::= single_dimension_restriction { AND single_dimension_restriction }*
single_dimension_restriction ::=

dimension_attribute { numeric_comparison | textual_comparison | set_membership_test }

// BASED ON clause
aggr_measure_list ::= single_aggr_measure { , single_aggr_measure }*
single_aggr_measure ::= measure_name [(rating_aggr_function)]
rating_aggr_function ::= numeric_aggr_function | boolean_aggr_function
numeric_aggr_function ::= MIN | MAX | SUM | AVG
boolean_aggr_function ::= DISJ | CONJ | MAJORITY

// PREFILTER and POSTFILTER clauses
preaggregation_measure_restrictions ::= measure_restrictions
postaggregation_measure_restrictions ::= measure_restrictions
measure_restrictions ::= single_measure_restriction { logical_op single_measure_restriction }*
single_measure_restriction ::= numeric_measure_restriction | boolean_measure_restriction
logical_op ::= AND | OR
numeric_measure_restriction ::= measure_name numeric_comparison
boolean_measure_restriction ::= measure_name | NOT (measure_name) | measure_name = boolean_value

// SHOW clause
measure_rank_restriction ::= { TOP | BOTTOM } number [BY measure_list]
measure_list ::= measure_name { , measure_name }*

// common expressions
dimension_attribute ::= dimension_name . attribute_name
dimension_name ::= variable
attribute_name ::= variable
measure_name ::= variable
numeric_comparison ::= { = | <> | > | < | <= | >= } number
textual_comparison ::= { = | LIKE } ‘string’
set_membership_test ::= { IN | NOT IN } (value_list)
value_list ::= numeric_value_list | textual_value_list
numeric_value_list ::= number { , number }*
textual_value_list ::= ‘string’ { , ‘string’ }*
boolean_value ::= true | false

Figure 1. BNF Specification of REQUEST Syntax.

 17

Figure 2. Combining dimension restrictions using (a) AND and (b) OR operators.

The PREFILTER and POSTFILTER clauses contain measure_restrictions that constitute a set of

restrictions on various types of measures used in cube_name. Note that, unlike dimension_restrictions,

both AND and OR operators are allowed in measure_restrictions according to Figure 1. REQUEST uses

separate RESTRICT and PRE-/POSTFILTER clauses when restricting attributes on dimensions and

rating measures for the following reasons. First, these two types of restrictions are semantically very

different: the first one restricts the contextual information by imposing conditions on dimensional

attributes, while the second does it on the measures. Second, the POSTFILTER clause must be kept

separately because, unlike RESTRICT, it is applicable to the aggregate ratings, which are semantically

different from the un-aggregated ratings. Although this point is not applicable to the PREFILTER clause,

it is better to keep both the PRE- and the POSTFILTER clauses (as they are symmetric), which makes it

impossible to merge PREFILTER and RESTRICT clauses. Third, as pointed out before, only

conjunctions are allowed in the RESTRICT, but both conjunctions and disjunctions are allowed in the

PRE- and POSTFILTER clauses, making it even more important to treat them separately. Fourth, to keep

the semantics of recommendations clear, it is important not to mix the rating measures and dimensional

restrictions by prohibiting expressions of the form “PersonalRating > Time.DayOfWeek.” These were

the reasons for keeping the two types of restrictions separate. Note that this situation is not unlike the

case in temporal databases, where separate WHERE and WHEN clauses are used for regular and temporal

dimensions [24].

Formally, the output of a recommendation query is a set of tuples { (t,Lt) | t∈T }, where t is a

User

Movie

(a) User.Age>=18 AND Movie.Genre=‘action’ (b) User.Age>=18 OR Movie.Genre=‘action’

User

Movie

Result:
cube

Result:
non-cube

 18

recommendation recipient and Lt is a list of recommendations for recipient t. For example, in a movie

recommender system, a simple example of a recommendation tuple would be: (JohnDoe,

<(Titanic,10),(Gladiator,9),(StarWars,8)>). In other words, T represents the element combinations of

dimensions from recipient_dim_list specified in the TO clause of the query, and Lt consists of an ordered

set of k recommendations, where k is specified by the SHOW clause of the query. More precisely, Lt = <

(rt1,mt1), …, (rtk,mtk) >, i.e., each recommendation is represented by a tuple (rtj,mtj), where rtj∈Rq and

mtj∈Mq. Here Rq represents the element combinations of dimensions from recommend_dim_list specified

in the RECOMMEND clause of the query (note that recommend_dim_list and recipient_dim_list must be

mutually exclusive), and Mq represents the combinations of possible values for one or more measures that

are specified in measure_list in the BY subclause (of the SHOW clause). Specific tuples (rtj,mtj) are

obtained from the processed ratings cube (i.e., after restrictions and aggregations specified in the query

are done) by sorting all cells belonging to a given recipient t based on their measure values; these measure

values mtj and the corresponding element combinations of “RECOMMEND” dimensions rtj constitute the

contents of each recommendation in Lt. Lt is further truncated according to the SHOW clause that limits

the results to the top or bottom k recommendations. If more than one measure is specified in

measure_list, then the ordering is lexicographic. For example, in Query 8, Movies are first ordered based

on the PersonalRating measure; if some records have the same value of PersonalRating, then those are

further sorted based on PublicRating. Also, if the optional BY subclause is not specified, the results are

sorted according to the first measure in the BASED ON clause.

According to the above formalism, the output of a recommendation query, i.e., { (t,Lt) | t∈T }, can be

intuitively represented as a matrix, the rows of which are defined by elements t of the “TO” dimensions

(i.e., by the recommendation recipients). The entries in each row are defined by the elements of list Lt,

where each element represents the specific values of the “RECOMMEND” dimensions and corresponding

rating measures. In other words, one row in a recommendation matrix directly corresponds to one

recommendation tuple (t, Lt) described earlier. For example, Figure 3 shows the output matrices for two

 19

recommendations (movies to users and vice versa). The answer to the left query shows top two movies

for each user, and the right one – the top two users for each movie (as specified in the SHOW clause).

The output matrix produced for the left query in Figure 3 is based on users (as specified in the TO clause),

and its cells contain movies (as specified in the RECOMMEND clause) and the corresponding rating

measures, which were also used for sorting.

Figure 3. Generating recommendations from a multidimensional ratings cube.

Note that, if the end-users want to use actual user names and movie titles in the output matrix, they

should specify the output_attribute_list parameters from Figure 1 in the RECOMMEND and TO clauses.

For example, the left recommendation in Figure 3 is stated as “RECOMMEND Movie(Title) TO

User(Name)…” If the output_attribute_list parameters are not specified, then the dimension keys are

used as defaults. For example, instead of using the names of the users, the system would output the

recommendations using user IDs. Also note that the recommendation results can be more complex in the

sense that multiple dimensions can be used in the RECOMMEND and TO clauses, as Query 4 from

Section 3.1 demonstrates. In such cases, each row in the output matrix would represent a

multidimensional element t (i.e., a vector representing a unique combination of elements of “TO”

 K-
PAX

Life of
Brian

Memento Notorious

Alice 4 3 2 4
Bob 5 4 5 3

Cindy 2 2 4 4
David 3 5 5 2

K-PAX Bob, 5
Alice, 4

Life of
Brian

David, 5
Bob, 4

Memento Bob, 5
David, 5

Notorious Alice, 5
Cindy, 5

Alice K-PAX, 4
Notorious, 4

Bob K-PAX, 5
Memento, 5

Cindy Memento, 4
Notorious, 4

David Life of Brian, 5
Memento, 5

RECOMMEND Movie (Title)
 TO User (Name)
USING TestCube

BASED ON Rating
SHOW TOP 2

RECOMMEND User (Name)
TO Movie (Title)
USING TestCube
BASED ON Rating
SHOW TOP 2

 20

dimensions) and, correspondingly, would also have more complex multidimensional entries in the cells.

Although we used the term “REQUEST queries” throughout the paper, recommendations are really

not queries according to the standard meaning of the term, since they return a very idiosyncratic output of

a recommendation matrix, which prevents the whole recommendation operation from being closed. To

address this issue, we distinguish between the Core-REQUEST query containing RECOMMEND, TO,

USING, RESTRICT, PREFILTER, POSTFILTER, and BASED ON clauses, and the recommendation

wrapper containing RECOMMEND, TO, and SHOW clauses (note, however, that different aspects of

RECOMMEND and TO are used in core and wrapper parts of the query). The Core-REQUEST query

operates on a multidimensional cube of ratings and always returns the same type of an object – a cube of

ratings. In contrast to this, the recommendation wrapper takes a multidimensional cube of ratings and

transforms it to a different type of object – the recommendation matrix that is subsequently returned as an

output to the end-user. When processing REQUEST queries, the core query is evaluated first, and then

the wrapper is applied to the output of the Core-REQUEST query.

Although REQUEST is related to the OLAP query languages, it has certain distinctive characteristics

pertaining to recommendations that make it different from these languages. First, as explained above,

REQUEST queries are divided into the “core” and “wrapper” components, each component requiring

separate evaluation methods. Second, ratings can be actual (specified by the user) and inferred (from the

actual ratings). Therefore, REQUEST supports mechanisms for distinguishing between different types of

ratings, as Query 7 demonstrated. Third, the language provides various other recommendation-specific

properties, such as using a single cube of ratings, the PREFILTER and POSTFILTER clauses, and

recommendation-specific types of aggregations. All this differentiates REQUEST from the general-

purpose OLAP-based query languages and makes it a uniquely suited vertically-targeted language for

recommender systems. This approach of developing a special-purpose vertical query language to meet

the idiosyncratic needs of a particular class of applications (recommender systems, in this case) is in line

with the development of other types of special-purpose query languages for different classes of vertical

database applications, such as temporal, spatial, and multimedia applications.

 21

3.3. Semantics of REQUEST Queries
Operational semantics of REQUEST is defined as the following sequence of operations over the cube

cube_name from the USING clause of the query. Note that this operational semantics is only conceptual,

i.e., the actual query processing may be performed differently, but would result in the same outcome.

1. Dimension restrictions. First, the dimension restrictions specified in the RESTRICT clause, if

present, produce a sub-cube of cube_name by restricting some of its dimensions to include only a subset

of their elements specified in the RESTRICT clause. For example, “RESTRICT User.Age ≥ 18 AND

Movie.Genre = ‘action’ ” produces a smaller cube having only the users with ages 18 and above and only

the action movies. Section 3.2 lists the limits to the syntax of these restrictions (e.g., only comparisons of

dimensional attributes to constants are allowed, and no disjunctions in the RESTRICT clause). This

amounts to applying restrictions in the RESTRICT clause one dimension at a time and also restricting one

attribute at a time. The order in which these dimensions are restricted is unimportant since the final result

does not depend on it.

2. Measure-based cube filtering (before aggregation). In this step, the cells of the restricted cube

produced in Step 1 are further filtered based on measure restrictions specified in the PREFILTER clause.

Since the measures supported by our multidimensional recommendation model can be either numeric or

Boolean, the measure-based filtering capabilities of REQUEST include comparisons of both numeric and

Boolean measures to specific values, as specified in Figure 1. Also note that this step filters individual

cube cells based on their measure values using multiple restrictions combined with AND and OR logical

operators. Again, all measures mentioned in the PREFILTER clause have to be present in the schema of

the cube_name cube.

3. Cube aggregation. After performing restricting and prefiltering operations in Steps 1 and 2, the

remaining cells of the obtained cube are aggregated according to the dimensions and their granularity

levels specified in the mutually exclusive lists recommend_dim_list and recipient_dim_list from the

RECOMMEND and TO clauses and according to the following three rules: (i) if a dimension is specified

in either RECOMMEND or TO clause by itself, i.e., without providing an aggregation attribute (e.g.,

 22

Movie), then the cube is not aggregated along this dimension; (ii) if a dimension is specified in either

RECOMMEND or TO clause with a corresponding aggregation attribute (e.g., Movie.Genre), then the

cube is aggregated along this dimension based on the specified attribute (e.g., all individual movies are

aggregated into their genres); (iii) if a dimension is omitted from both RECOMMEND and TO clauses,

then the cube is aggregated fully along this dimension (i.e., in the resulting cube this dimension

essentially disappears). Furthermore, the aggregation is done for the measures specified in the BASED

ON clause. This clause also specifies the aggregation functions to be used for each measure. The

currently supported numeric aggregation functions include AVG, SUM, MIN, and MAX, and the

supported Boolean aggregation functions include CONJ (i.e., conjunction), DISJ (i.e., disjunction), and

MAJORITY; however, the REQUEST language can be easily extended to support additional aggregation

functions, such as AVG-in-TOP-n. If an aggregation function is not specified for the measures in the

BASED ON clause, a default aggregation function for that measure is used (e.g., AVG). Essentially, this

step represents a typical “roll-up” operation in OLAP systems. Figure 4 provides further illustration of

the cube aggregation operation, where the Time dimension is collapsed and the User dimension is

aggregated based on the gender attribute. Then, for each movie, all the ratings across different occasions

provided by users of a particular gender (e.g., see the shaded area in Figure 4) are averaged using the

AVG function.

4. Measure-based cube filtering (after aggregation). In this step, the cells of the resulting aggregated

cube can further be filtered based on the aggregated measure restrictions specified in the POSTFILTER

clause. As it is specified in the BNF grammar in Figure 1, the syntax of the POSTFILTER clause is the

same as for PREFILTER. Thus, if a given REQUEST query contains no aggregation, then PREFILTER

and POSTFILTER, if both present, can be combined as a conjunction into one measure-based filtering

operation at the query processing stage. Also, all the measures mentioned in the POSTFILTER clause

must appear among the measures mentioned in the BASED ON clause (because only these measures are

aggregated). Note that the POSTFILTER clause is somewhat similar to the HAVING clause in SQL

since both of them provide additional restrictions based on the aggregated data. However, one significant

 23

difference is that SQL allows creating an arbitrary number of aggregated attributes from the same un-

aggregated one, e.g., “SELECT MIN(Rating), MAX(Rating), SUM(Rating), COUNT(Rating),

AVG(Rating) FROM Table”. In contrast, each measure can lead to just one aggregated version of itself

in REQUEST. Another difference is that REQUEST supports not only numeric, but also Boolean

aggregation functions (that are not available in standard SQL).

Figure 4. Cube aggregation operation.

5. Generating recommendations. In this step, the cube obtained in Step 4 is transformed into a

specialized recommendation matrix, as was described in detail in Section 3.2. The rows of this matrix are

determined by the TO clause of the REQUEST query. Each row of the matrix also contains the list of the

records specified in the RECOMMEND clause and the measures are used to sort the results. These lists

of records are sorted and truncated based on the SHOW clause.

This completes the description of semantics of the REQUEST language. This description was

provided in a semi-formal manner in the sense that we did not use mathematics to define semantics of

each of the 5 operations formally for the sake of readability. However, we provided enough details for

the interested reader to easily understand and reconstruct formal semantic procedures defining each of

these five steps. Moreover, we provide a formal definition of the recommendation algebra in Section 4

which will make this reconstruction process even easier.

Aggregating:
- Time dimension fully
- User dimension into genders

Query: RECOMMEND User.Gender TO Movie
USING MovieRecommender
BASED ON PersonalRating(AVG)

female
User

Movie

Time

male

female

User.
Gender

Movie

male

 24

We next present a recommendation algebra that more formally defines how REQUEST queries are

processed. Since algebraic operators should return objects of the same type as their inputs, we will target

the recommendation algebra only to the Core-REQUEST queries (corresponding to Steps 1-4 above). To

process a full REQUEST query, we construct an algebraic expression equivalent to the Core-REQUEST

query, evaluate it, and then “feed” the results into the REQUEST wrapper to produce the final output.

4. Recommendation Algebra (RA)
Since multidimensional recommendations are based on the OLAP paradigm, we use the OLAP algebras

introduced in the database community [1, 12, 17, 18, 25] to define the recommendation algebra.

However, since the REQUEST language is tailored specifically for the domain of recommendations, only

a subset of the standard OLAP operators is needed to process REQUEST queries. For example, we do

not use a JOIN operator in the recommendation algebra because REQUEST works only on one cube, and

we do not use the PUSH and PULL operators for the reasons explained in Section 3. In the rest of this

section, we describe the recommendation algebra RA. We will follow the definitions of the OLAP

operators introduced in [25].

The general syntax of recommendation algebra operators is:

CO = OPparameters(CI),

where CI = (D, M, H, E, L) denotes the input cube, CO = (D*, M*, H*, E*, L*) – the resulting output cube,

OP – a recommendation algebra operator, and parameters – the parameters of operator OP. The ratings

cube and its components D, M, H, E, and L are defined in Section 2.

We next introduce individual operators using this general syntax.

Dimension restriction (DRSTR) operator. This operator defines the “slice and dice” operation on the

cube by putting restrictions on the dimensions. The simplest form of DRSTR operator is:

CO = DRSTRPsimple(CI),

where Psimple is a domain restriction based on a single dimension di, e.g., “User.Age > 21”. In other

words, Psimple is a Boolean function (a predicate) of the form Psimple: Ei { true, false }. Given an

arbitrary input ratings cube, as a result of this operator, only those cells that satisfy the given predicate are

 25

retained in the resulting cube. The calculation of CO is formally defined as:

• D* = D, M* = M, and H* = H.
• * { | ()}i i i simple iE e E P e= ∈ . Also, *

j jE E= , if j ≠ i.

• * * *
1{(,) | }nL address content L address E E= ∈ ∈ × ×… .

In addition to the aforementioned simple predicates, this operator can also support more complex

predicates. For example, Pcomplex could be represented by a compound predicate of the form

Pcomplex = p1 AND p2 AND … AND px

where each pj is a domain restriction involving a single dimension. Because the result of a simple

predicate-based restriction is always a cube, the compound restriction operator is defined as a

composition of simple restriction operators, i.e.,

 CO = DRSTRPcomplex(CI) = DRSTRp1 AND … AND px (CI) = DRSTRp1(DRSTRp2(…(DRSTRpx(CI))…)).

Note that, while DRSTR operator can support predicates with conjunctions (logical AND operations),

it does not support arbitrary disjunctions (logical OR operations) because the result of such operations is

no longer guaranteed to be a cube, as mentioned earlier.

Measure restriction (MRSTR) operator. This operator defines the “cell filtering” operation on the

ratings cube by putting restrictions on measures. The simplest form of MRSTR operator is:

CO = MRSTRP(CI),

where P is a measure restriction based on a single measure mj. The restrictions can be based on a numeric

measure (“PersonalRating > 7”) and on a Boolean measure (“Consumed = false”).

Unlike the DRSTR operator (which is a “slice and dice” operator), the MRSTR operator performs

simple filtering of cube cells and, therefore, can support more complex predicates, e.g.,

P = p1 <op> p2 <op> … <op> px ,

where <op> represents a logical operator AND or OR. Given an arbitrary input cube, as a result of this

operator, only the content of cells that satisfy the given predicate are retained in the resulting cube. The

content of all other cells is assigned to NULL (these cells are retained and not deleted in order to maintain

the proper cube structure).

 26

The calculation of CO is formally defined as follows:

• D* = D, M* = M, H* = H, and E* = E.
• Assign L* = L. Then, ∀(address, content)∈L*: if ¬P(content) then L*[address] = NULL.

Metric projection (MRPJ) operator. This operator restricts the output of a ratings cube to include only a

subset of the original set of measures. The simple form of MRPJ operator is:

CO = MRPJmj(CI),

where mj is a measure to be projected out. The calculation of CO is formally defined as follows:

• D* = D, H* = H, and E* = E.
• M* = M – { mj }.
• Assign L* = L. Then, ∀(address, content)∈L*: remove the jth measure from L*[address].

If, as a result, L*[address] has no more measures left, assign L*[address] = NULL.

If a set of metrics M' = {m'1, …, m'x} is needed to be removed at once, a more complex MRPJ operator

can be implemented as a composition of simple MRPJ operators. In other words,

CO = MRPJM' (CI) = MRPJm'1(…(MRPJm'x(CI))…).

Destroy dimension (DTDM) operator. This operator reduces dimensions of the resulting ratings cube by

including only a subset of the original set of dimensions. The simplest form of DTDM is

CO = DTDMdi(CI),

where di is a dimension to be destroyed. Note that, if we destroyed dimension di by just removing its

component from all cube cell addresses, we would have a number of cells in the cube with the same exact

addresses, which leads to ambiguous results and, therefore, is undesirable. One way to deal with this

situation is to aggregate all cells with the same address into a single cell in a resulting cube. Since, as

described below, we already have an operator for cell aggregation (i.e., AGGR), we do not introduce the

aggregation capability into DTDM. Therefore, in order to properly destroy dimension di, we restrict the

use of the DTDM operator only to the situations in which there is no ambiguity and no loss of information

in the resulting cube. Thus, dimension di can be destroyed only when it has been maximally aggregated,

i.e., when |Ei| = 1.

The calculation of CO is formally defined as follows:

 27

• If |Ei| > 1, abort processing and return the same ratings cube, i.e., CO = CI . Otherwise,
continue as specified below.

• M* = M, D* = D – { di }, H* = H – { Hi }, and E* = E – { Ei }.
• Assign L* = L. Then, ∀(address, content)∈L*: remove the ith dimension from address.

If a set of dimensions D' = {d'1, …, d'x} is needed to be removed at once (assuming they are all

maximally aggregated), a more complex DTDM operator can be easily implemented as a combination of

simpler DTDM statements. In other words,

CO = DTDMD' (CI) = DTDMd'1(…(DTDMd'x(CI))…).

Aggregation (AGGR) operator. The aggregation operator performs aggregation on one or more

dimensions and applies aggregation functions, such as SUM, AVG, etc., to each of the measures of the

cube based on dimensions specified as grouping attributes. The general form of AGGR is:

1 1 1 1(. ,..., .),(. ,..., .) ()
l l k kO d x d x m f m f IC AGGR C=

where di.xi represents a grouping attribute for dimension di (specified only for dimensions that need to be

grouped). Also, mj.fj is an aggregation function specified for each cube measure mj. If the aggregation

function is not specified for some measure, a default aggregation function for that measure is used. After

aggregation, di.xi becomes a dimension (with its own attributes, whichever appropriate) by replacing di.

Our model also provides a special option to aggregate the dimension completely by specifying di.xi as

di.ALL (instead of using some attribute name). Furthermore, mj.fj can be one of the standard numeric

aggregation functions (e.g., MAX, MIN, AVG, SUM) or Boolean aggregation functions, including:

() DISJ()j b Bf B B b∈= =∨ , () CONJ()j b Bf B B b∈= =∧ , and

true, if |{ | true}| |{ | false}|
() MAJORITY()

false, otherwise j

b B b b B b
f B B

∈ = ≥ ∈ =⎧
= = ⎨

⎩
.

As an example, consider the movie recommender system having three dimensions: User, Movie, and

Time. Suppose user John Doe wants to know which movies that he has not seen yet are most relevant to

him, regardless of when he is planning to watch them. Suppose the system has the following four ratings

for John Doe: [(John Doe, Gladiator, weekday), (Rating=8, Consumed=true)], [(John Doe, Gladiator,

 28

weekend), (Rating=9, Consumed=false)], [(John Doe, Titanic, weekday), (Rating=7, Consumed=false)],

[(John Doe, Titanic, weekend), (Rating=8, Consumed=false)]. In this case, the aggregation operator

would look like:

(.),(. , .) ()O Time ALL Rating AVG Consumed DISJ IC AGGR C= .

Since the time dimension has to be aggregated completely, we use AVG function to aggregate the

ratings for the same movie; we also use DISJ Boolean aggregation function to make sure that movies with

at least one Consumed rating would not get recommended (since the user has seen it already). In this

case, the results of aggregation would be: [(John Doe, Gladiator, ALL), (Rating=8.5, Consumed=true)],

[(John Doe, Titanic, ALL), (Rating=7.5, Consumed=false)], and the user, by filtering on the

“Consumed=false” status flag, would be able to receive a correct recommendation of “Titanic”, since the

user has already seen “Gladiator”.

Now consider the same four ratings but a different scenario, where John Doe wants to know which

times of week seem to be best for him in terms of movie watching, regardless of what kind of movie he is

planning on watching. In this case, the aggregation operator would be:

(. , .),(. , .) ()O Movie ALL Time TimeOfWeek Rating AVG Consumed CONJ IC AGGR C= .

Since the movie dimension has to be aggregated completely, we again use AVG function to aggregate the

ratings for the same time values. However, this time it may make more sense to use the CONJ Boolean

aggregation function to make sure that only time periods with no unseen movies (i.e., with no

Consumed=false flags) would get labeled as Consumed=true (since only in that case there would not be

anything for the user to watch during that time period). Note that, while in the current model we use

CONJ, DISJ, and MAJORITY functions, other Boolean aggregation functions are also possible.

The calculation of CO is then formally defined as follows:

• D* = D – ∪i { di } + ∪i { di.xi }. Note that, if di.xi = Root(Hi) then dimension di remains
unchanged, i.e., there is no aggregation on di. As a result, Ei, and Hi (see below) would
also remain unchanged.

• M* = M.

 29

• ∀i = 1, …, n: * (, .)i i i iH SubGraph H d x= . In other words, the attributes for the newly
aggregated dimension are the ones that are uniquely determined by the new key attribute
di.xi (i.e., that are reachable from di.xi in the attribute hierarchy for dimension di).
Furthermore, after aggregation, only the hierarchy structure rooted in node di.xi is needed
for further processing. For example, based on Time dimension attribute hierarchy (i.e.,
Time DayOfWeek TimeOfWeek), after aggregating Time dimension based on
DayOfWeek the new set of attributes would be {DayOfWeek, TimeOfWeek}.

• ∀i = 1, …, n: * (.)i i iE dom d x= . The cube cells along the newly aggregated dimension
become labelled with the values of the new key attribute. For example, after aggregating
Time dimension based on DayOfWeek, the cube cells for this dimension would be
labeled as { Mon, Tue, Wed, Thu, Fri, Sat, Sun }.

• () () ()
*

* * * * *
1

,

 1... []. [].
jn j f j

address L
address address

address E E j k L address m aggr L address m
∈

∀ ∈ × × ∀ = =

≺

… .

In other words, each metric mj is computed for each cell of the new cube using
aggregation function fj and based on cells from input cube that were replaced by (or
aggregated into) a given cell. More precisely, given 1 1(,...,)n naddress e e E E= ∈ × ×…
and * * * * *

1 1(,...,)n naddress e e E E= ∈ × ×… , we say that *address address≺ if and only if
*.i i i i id e d x e= ⇒ = . Finally, note that cube cells that have NULL values are ignored

during the aggregation. However, if all underlying cells have NULL values for a specific
aggregation, then that aggregated cell will be assigned the NULL value as well.

Composition of RA operators. The recommendation algebra RA is formed by the composition of these

five operators. Since each of these operators takes a rating cube and produces another rating cube, the RA

algebra is closed. For example, Query 3 (recommend top 5 movies to the user to see over the weekend,

but only when the personal ratings of the movies are higher than 7) can be expressed in RA as:

MRSTR(PersonalRating > 7) (DTDM(Theater, Time, Companion) (
AGGR(Theater.ALL, Time.ALL, Companion.ALL),(PersonalRating.AVG) (

MRPJ(PublicRating, Consumed) (DRSTR (Time.TimeOfWeek="weekend") (MovieRecommender)))))

As explained before, this algebraic expression specifies only the core part of the REQUEST query.

The actual recommendation results are generated by the REQUEST wrapper from the results of the core

query. Therefore, this algebraic expression destroys all other dimensions towards the end, leaving only

the User and Movie dimensions for the wrapper to work with. Also, this example shows how MRPJ and

DTDM operators remove measures and dimensions from the cube; e.g., PublicRating and Consumed

measures as well as Theater, Time, and Companion dimensions are removed from the

 30

MovieRecommender cube.

5. Mapping REQUEST Queries into Recommendation Algebra RA
The translation of the “core” part of the REQUEST query is based on the underlying algebra RA. In

particular, the mapping is performed by parsing the query and generating corresponding algebraic

operators. The MAP algorithm, presented in Figure 5, shows how to translate an arbitrary Core-

REQUEST query with its specific parameters, such as various aggregations as well as measure or

dimension restrictions, into an algebraic expression in RA.

As mentioned earlier, the most general form of the REQUEST query is:

REQUEST_query ::= RECOMMEND recommend_dim_list TO recipient_dim_list
USING cube_name
[RESTRICT dimension_restrictions]
[PREFILTER preaggregation_measure_restrictions]
BASED ON aggr_measure_list
[POSTFILTER postaggregation_measure_restrictions]
[SHOW measure_rank_restriction]

Based on the input query REQUEST_query, the MAP algorithm produces a corresponding algebraic

expression RA_op in RA. By default, initially RA_op is assigned the identity operator ID (Line 1), i.e.,

ID(cube) ≡ cube for any cube instance. Then, MAP continuously “grows” this initial algebraic

expression RA_op by composing it with newly generated operators in the following way. For notational

purposes, we use the ⊕ symbol to represent the composition of two algebraic operators, i.e., op1 ⊕ op2

(cube) = op2(op1(cube)) for any cube and any algebraic operators op1, op2. In particular, first, MAP checks

whether REQUEST_query has any restrictions on dimensions (Line 2) and, if so, MAP then generates a

dimension restriction operator DRSTR with corresponding parameters (Line 3). Second, MAP checks

whether REQUEST_query has any restrictions on measures (Line 4) and, if so, it then generates a measure

restriction operator MRSTR with corresponding parameters (Line 5). Third, once dimension and measure

restrictions are applied, the aggregation is performed next. The measures to be aggregated and their

aggregation functions are specified by the user in the BASED ON clause of the query, but first the unused

measures (measures that do not appear in this clause) are projected out using operator MRPJ (Lines 6-7).

Subsequently, operator AGGR is generated (Line 17) with parameters dimension_aggregations and

 31

measure_aggregations, where the former specifies the granularity (or aggregation) levels for all

dimensions that need to be grouped (Lines 8-13) and the latter specifies aggregation functions for all

measures (Lines 14-16). Fourth, all the irrelevant (and fully aggregated) dimensions, i.e., the dimensions

that do not appear in RECOMMEND and TO clauses, are destroyed using operator DTDM (Lines 18-19).

Fifth, MAP checks whether REQUEST_query has any post-aggregation restrictions on measures (Line

20) and if so, it then generates a measure restriction operator MRSTR with corresponding parameters

(Line 21). Finally, Line 22 returns the resulting algebraic expression RA_op, and the query results can be

obtained by applying RA_op to the input cube cube_name specified in the USING clause.

MAP(REQUEST_query) {
(1) RA_op := ID
(2) if (∃ RESTRICT clause in REQUEST_query) then
(3) RA_op := RA_op ⊕ DRSTR(dimension_restrictions)
(4) if (∃ PREFILTER clause in REQUEST_query) then
(5) RA_op := RA_op ⊕ MRSTR(preaggregation_measure_restrictions)
(6) foreach m ∉ aggr_measure_list in BASED ON clause
(7) RA_op := RA_op ⊕ MRPJm
(8) dimension_aggregations = ∅
(9) foreach di ∈ cube_name
(10) if di ∉ recommend_dim_list ∪ recipient_dim_list then
(11) dimension_aggregations := dimension_aggregations ∪ { di.ALL }
(12) else if (∃x) di.x ∈ recommend_dim_list∪recipient_dim_list then
(13) dimension_aggregations := dimension_aggregations ∪ { di.x }
(14) measure_aggregations = ∅
(15) foreach (mj, aggrj) ∈ aggr_measure_list in BASED ON clause
(16) measure_aggregations := measure_aggregations ∪ { mj.aggrj }
(17) RA_op := RA_op ⊕ AGGR(dimension_aggregations),(measure_aggregations)
(18) foreach d ∉ recommend_dim_list ∪ recipient_dim_list
(19) RA_op := RA_op ⊕ DTDMd
(20) if (∃ POSTFILTER clause in REQUEST_query) then
(21) RA_op := RA_op ⊕ MRSTR(postaggregation_measure_restrictions)
(22) return RA_op;

}
Figure 5. Mapping Core-REQUEST queries into RA expressions.

We next explore a formal relationship between the Core-REQUEST queries and RA. To do this, we

first introduce some preliminary concepts. Let o be a specific instance of any of the five RA operators,

for example, o = DRSTR(Movie.Genre = “comedy”). Given recommendation cube C, we say that o is a well-

defined operation for C if o(C) can be successfully performed based on the schema of cube C as well as

 32

the dimensions, attributes, and measures specified in operator o. For example, operator DRSTR(Movie.Genre

= “comedy”) is well-defined for any cube that has dimension Movie with an attribute Genre and is not well-

defined for any other cube.

The notion of a well-defined operation can be directly extended from a single algebraic operator to

sequences of operators. Let s be a sequence of RA operators, i.e., s = <o1, …, on>, where each oi is a

specific instance of any of the five RA operators. We say that s is a well-defined operation sequence for

cube C if operation on(on-1(…(o2(o1(C))))) can be successfully performed in the sense that each operator oi

in the sequence is well-defined for its input cube: operator o1 is well-defined for cube C, o2 is well-

defined for cube o1(C), etc., i.e., oi is well-defined for cube oi-1(…(o1(C))) for each i = 2, …, n.

Lemma 1 [safe swap of DRSTR forward]. Let oDRSTR be an instance of the DRTSR operator, oANY be an

instance of any of the five recommendation algebra operators (i.e., DRSTR, MRSTR, MRPJ, DTDM,

AGGR), and C be a recommendation cube where oDRSTR(oANY(C)) is well-defined. Then, oANY(oDRSTR(C))

is also well-defined and oDRSTR(oANY(C)) = oANY(oDRSTR(C)).

Proof. Immediate from the definitions of RA operators.

Lemma 2 [safe swap of DTDM back]. Let oDTDM be an instance of the DTDM operator, oANY be an

instance of any of the five RA operators, and C be a recommendation cube where oANY(oDTDM(C)) is well-

defined. Then, oDTDM(oANY(C)) is also well-defined and oANY(oDTDM(C)) = oDTDM(oANY(C)).

Proof. Immediate from the definitions of RA operators.

Lemma 3 [safe swap of MRPJ back]. Let oMRPJ be an instance of the MRPJ operator, oANY be an instance

of any of the five RA operators, and C be a recommendation cube where oANY(oMRPJ(C)) is well-defined.

Then, oMRPJ(oANY(C)) is also well-defined and oANY(oMRPJ(C)) = oMRPJ(oANY(C)).

Proof. Immediate from the definitions of RA operators.

Theorem 1 [canonical form of recommendation algebra]. Let C be a recommendation cube. Then, for

any sequence s of recommendation algebra operators, such that s(C) is a well-defined operation, there

 33

exists a corresponding canonical sequence s' of the form:2

s' = <[DRSTR],[MRSTR],(AGGR,[MRSTR])*,[DTDM],[MRPJ]> (1)

that is equivalent to s(C), i.e., s'(C) = s(C), and where the number of AGGR operators in s' is equal to the

number of AGGR operators in s.

Proof. The proof is provided in the Online Supplement.

We next establish the relationship between Core-REQUEST and RA.

Theorem 2. RA is strictly more expressive than Core-REQUEST.

Proof. Obviously, RA is at least as expressive as the Core-REQUEST language, because every Core-

REQUEST statement can be expressed in RA using the MAP algorithm. Furthermore, directly from the

MAP algorithm we have that all Core-REQUEST queries are of the following algebraic form:

<[DRSTR],[MRSTR],[MRPJ],[AGGR],[DTDM],[MRSTR]>. Based on Lemmas 2 and 3 and also on the

fact that, in the absence of AGGR operator, PREFILTER and POSTFILTER can be represented as one

measure restriction operation (as mentioned in Section 3), all Core-REQUEST queries can also be

expressed by the following equivalent sequence: <[DRSTR],[MRSTR],[AGGR,[MRSTR]],[DTDM],

[MRPJ]>. Based on Theorem 1, it is clear that RA can produce the expressions of a strictly more general

form, i.e., <[DRSTR], [MRSTR],(AGGR,[MRSTR])*,[DTDM],[MRPJ]>, where the precise difference in

expressive power lies in the RA’s ability to specify multiple <AGGR, [MRSTR]> operator sequences (as

opposed to only 0 or 1 such sequences in Core-REQUEST).

Theorems 1 and 2 explain the difference between expressive powers of RA and Core-REQUEST at

the theoretical level: Core-REQUEST allows at most one aggregation operation in a query, while RA

supports multiple aggregations because the algebra is closed. For example, in a 2-dimensional

recommendation application with User and Movie dimensions and one measure, Rating, the following

RA expression

AGGR(User.ALL, Movie.ALL),(Rating.AVG)(MRSTR(Rating >7)(AGGR(User.Profession, Movie.Genre),(Rating.AVG)(C)))

2 Using traditional notation, the square brackets denote that a particular operator is optional, and the star symbol (*)
in (AGGR,[MRSTR])* denotes zero, one, or more repetitions of AGGR and, optionally, MRSTR operators.

 34

cannot be expressed in Core-REQUEST.

One way to address the issue that Core-REQUEST is strictly less expressive than RA is to extend

REQUEST in such a way that their expressive powers would become equal. According to Theorems 1

and 2, this would mean providing support for multiple aggregations (and optional measure restriction

capabilities after each aggregation) in REQUEST. One way to achieve this is by supporting an arbitrary

number of Core-REQUEST query compositions (e.g., that could be implemented via nested queries). It

immediately follows from Theorems 1 and 2 and Lemmas 1-3 that such an extended language would have

the same expressive power as algebra RA. Upon a careful consideration, however, we decided against

this extension when designing REQUEST because multiple aggregations (a) do not occur naturally in

recommendation applications and, therefore, have a very limited need in the real-world applications, and

(b) unnecessarily complicate the language design by adding extra complexity needed for allowing an

arbitrary number of aggregations. These extensions would make REQUEST significantly less user-

friendly without providing tangible benefits. Note also that, aside from these query compositions with

two or more aggregation operators (which cannot be expressed in Core-REQUEST), composition of any

other Core-REQUEST queries (i.e., having zero or one aggregations among them) can always be

expressed in Core-REQUEST, according to Theorem 1, Lemmas 1-3, and the definitions of RA operators.

6. Conclusions
In this paper we introduced language REQUEST for specifying user-driven recommendations.

REQUEST queries are formulated on multidimensional cubes of ratings, support OLAP-based

aggregation capabilities, are expressed in a simple declarative language capturing idiosyncrasies of

recommender systems, and thus provide several advantages to the users of recommender systems. In

particular, REQUEST empowers the end-users by letting them customize recommendations by

formulating them in the ways that satisfy their individual needs in a flexible and user-friendly manner.

Also, unlike SQL, which constitutes a general-purpose database query language, REQUEST is designed

specifically for multidimensional recommender systems. Therefore, its constructs are developed

exclusively for specific recommendation contexts, and every REQUEST query can be directly interpreted

 35

as a recommendation. As a result, REQUEST can express complex recommendations in a concise and

clear manner. Finally, REQUEST design follows the multidimensional data model and does not depend

on any of its particular implementations (one can use ROLAP, MOLAP, hybrid OLAP, or even non-

OLAP-based approaches to implement multidimensional recommender systems).

We also presented an OLAP-based recommendation algebra, showed how REQUEST

recommendations can be expressed in it, and analyzed its expressiveness. Therefore, REQUEST queries

can be processed using this mapping similarly to how SQL queries are processed in relational DBMSes.

One query processing problem pertaining to recommender systems deals with the determination of which

new ratings need to be evaluated in order to answer a particular REQUEST query, in case the entire cube

of ratings cannot be pre-computed ahead of time. For example, in order to answer the query “which

movies to recommend to Jane Doe to see on March 5 on Saturday night with her boyfriend in a movie

theatre,” the system may not need to estimate all the ratings on-the-fly in the recommendation cube

described in Example 1. Since rating estimation in such cases becomes query-dependent, an interesting

and challenging problem is to determine the subset of ratings that needs to be estimated to answer a given

query. We plan to study this problem in the future.

Finally, it is important to develop a good GUI-based front-end to REQUEST so that naïve end-users

would be able to express their user-driven recommendations using this interface. Designing such

interface constitutes another topic of our future research.

Acknowledgments
Research of G. Adomavicius was supported in part by the National Science Foundation under grant no.

0546443. Any opinions, findings and conclusions or recommendations expressed in this material are

those of the author(s) and do not necessarily reflect the views of the National Science Foundation (NSF).

References
[1] Agrawal, R., A. Gupta, S. Sarawagi. Modeling multidimensional databases. In Proceedings of the

13th International Conference on Data Engineering, pp. 232-243, April 1997.

[2] Adomavicius, G., A. Tuzhilin. Incorporating Context into Recommender Systems Using

Multidimensional Rating Estimation Methods. In Proceedings of the 1st International Workshop on

 36

Web Personalization, Recommender Systems and Intelligent User Interfaces (WPRSIUI 2005), pp.

3-13, October 2005.

[3] Adomavicius, G., A. Tuzhilin. Towards the next generation of recommender systems: A survey of

the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data

Engineering, 17(6):734-749, June 2005.

[4] Adomavicius, G., R. Sankaranarayanan, S. Sen, A. Tuzhilin. Incorporating Contextual Information

in Recommender Systems Using a Multidimensional Approach. ACM Transactions on Information

Systems, 23(1):103-145, January 2005.

[5] Adomavicius, G., A. Tuzhilin. Multidimensional Recommender Systems: A Data Warehousing

Approach. In L. Fiege, G. Mühl, U. Wilhelm (Eds.), Electronic Commerce: Second International

Workshop (WELCOM 2001), Lecture Notes in Computer Science, vol. 2232, pp. 180-192, 2001.

[6] Bennet, J., S. Lanning. The Netflix Prize. In Proceedings of KDD Cup and Workshop 2007 at the

13th ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining, pp. 3-6, August 2007.

[7] Balabanovic, M., Y. Shoham. Fab: Content-based, collaborative recommendation.

Communications of the ACM, 40(3):66-72, March 1997.

[8] Burke, R. Hybrid Web Recommender Systems. In P. Brusilovsky, A. Kobsa, W. Nejdl (Eds.), The

Adaptive Web: Methods and Strategies of Web Personalization, Lecture Notes in Computer

Science, vol. 4321, pp. 377-408, Springer, Berlin, 2007.

[9] Ceri, S., G. Gottlob. Translating SQL into relational algebra: Optimization, semantics and

equivalence of SQL queries. IEEE Transactions on Software Engineering, 11(4):324-345, 1985.

[10] Chaudhuri, S., U. Dayal. An overview of data warehousing and OLAP technology. ACM

SIGMOD Record, 26(1):65-74, 1997.

[11] Cohen, W. W., R. E. Schapire, Y. Singer. Learning to order things. Journal of Artificial

Intelligence Research, 10:243-270, 1999.

[12] Gyssens, M., L.V.S. Lakshmanan. A foundation for multi-dimensional databases. In Proc. of the

23rd International Conf. on Very Large Data Bases (VLDB-97), pp. 106-115, 1997.

[13] Hill, W, L. Stead, M. Rosenstein, G. Furnas. Recommending and evaluating choices in a virtual

community of use. In Proceedings of the Conference on Human Factors in Computing Systems

(CHI’95), pp. 194-201, 1995.

[14] Jameson, A. and B. Smyth. Recommendation to Groups. P. Brusilovsky, A. Kobsa, W. Nejdl

(Eds.), The Adaptive Web: Methods and Strategies of Web Personalization, Lecture Notes in

Computer Science, vol. 4321, pp. 596-627, Springer, Berlin, 2007.

[15] Kimball, R. The Data Warehouse Toolkit. John Wiley & Sons Inc., 1996.

[16] Koutrika, G., R. Ikeda, B. Bercovitz, H. Garcia-Molina. Flexible Recommendations over Rich

 37

Data. In Proceedings of the 2008 ACM Conference on Recommender Systems (RecSys’08), pp.

203-210, Lausanne, Switzerland, October 2008.

[17] Li, C., X. Sean Wang. A Data Model for Supporting On-Line Analytical Processing. In

Proceedings of the 5th International Conference on Information and Knowledge Management

(CIKM-1996), pp. 81-88, November 1996.

[18] Marcel, P. Modeling and querying multidimensional databases: an overview. Networking and

Information Systems Journal, 2(5):515-548, 1999.

[19] Mild, A., T. Reutterer. Collaborative Filtering Methods for Binary Market Basket Data Analysis.

Lecture Notes in Computer Science, vol. 2252, pp. 302-313, Springer Berlin / Heidelberg, 2001.

[20] Miller, B. N., I. Albert, S. K. Lam, J. A. Konstan, J. Riedl. MovieLens Unplugged: Experiences

with an Occasionally Connected Recommender System. In Proceedings of the International

Conference on Intelligent User Interfaces, pp. 263-266, 2003.

[21] Ramakrishnan, R., J. Gehrke. Database Management Systems, McGraw-Hill, 2000.

[22] Resnick, P., N. Iakovou, M. Sushak, P. Bergstrom, J. Riedl. GroupLens: An open architecture for

collaborative filtering of netnews. In Proceedings of the 1994 ACM Conference on Computer

Supported Cooperative Work, pp. 175-186, 1994.

[23] Shardanand, U., P. Maes. Social information filtering: Algorithms for automating “word of

mouth.” In Proc. of the Conf. on Human Factors in Computing Systems, pp. 210-217, 1995.

[24] Snodgrass, R. The temporal query language TQuel. ACM Transactions on Database Systems,

12(2):247-298, 1987.

[25] Thomas, H., A. Datta. A conceptual model and algebra for On-Line analytical processing in

decision support databases. Information Systems Research, 12(1):83-102, 2001.

[26] Umyarov, A., A. Tuzhilin. Improving Collaborative Filtering Recommendations Using External

Data. In Proc. of the IEEE International Conf. on Data Mining (ICDM-2008), pp. 618-627, 2008.

[27] Wade, W. A grocery cart that holds bread, butter and preferences. New York Times, Jan 16, 2003.

