
Does the recommendation task affect a CARS
performance?

Umberto Panniello
Politecnico di Bari

Viale Japigia, 182 – 70026 Bari (Italy)
+390805962765

m.gorgoglione@poliba.it

Michele Gorgoglione
Politecnico di Bari

Viale Japigia, 182 – 70026 Bari (Italy)
+390805962765

u.panniello@poliba.it

ABSTRACT

There is growing interest on improving the performance of

recommender systems (RSs) by using context-aware recommender

systems (CARS). However, companies may adopt different

recommendation tasks, from recommending few items of very

high interest to recommending all possibly interesting items.

These tasks are influenced by some characteristics of the

application and other business conditions. The aim of this

research is to experimentally investigate whether a CARS always

outperforms a traditional RS or if it happens only in some specific

recommendation tasks. To this aim, we have compared the

performance of a RS and three approaches to CARS, namely a

pre-filtering and two post-filtering methods, by using two

recommendation tasks, the first recommending only the top-k

items, the second recommending all the items potentially good for

the customer. Experiments were performed across several

conditions and using three datasets from e-commerce applications.

Categories and Subject Descriptors

H.3 [Information storage and retrieval]: H.3.3 Information

Search and Retrieval–Information filtering

General Terms

Algorithms, Performance, Modeling

Keywords

Recommender System, Context, Recommendation strategy

1. INTRODUCTION
Context-Aware Recommender Systems (CARS) are receiving

growing attention by researchers and companies, as they were

proved to improve the recommendation performance in several

conditions. On the industrial side, companies may deliver

recommendations in different ways depending on factors related

to the business application. For instance, frequently

recommending many items may either increase a customer’s

interest and knowledge on products or annoy her causing an

opposite reaction. On the other hand, few recommendations may

cause the company to lose sales opportunities, but also increase a

customer’s attention. Similarly, recommending only the new

products the customer has never seen before may be useful when

products are rarely purchased more than once, such as comics

books. When repeated purchases are frequent, e.g., in e-grocery,

companies find more useful to remind customers to buy products

they have already bought in the past. In general, different

recommendation strategies may have different effects.

Companies adopting Recommender Systems (RS) are interested in

increasing the recommendation performance. Including context in

the recommendation engine may improve performance under

certain circumstances [11, 1, 2]. However, we know from prior

research that CARSs often outperform un-contextual RSs, but not

in all conditions [11]. As an example, although the F-measure of a

CARS is very often greater than that of a RS, Precision and Recall

can present opposite figures. Hence, in some conditions (e.g.,

when not missing an important recommendation is critical) a

company should prefer to improve Recall rather than Precision,

and the usage of a CARS would be detrimental. Therefore, the

issue of whether a CARS outperform a RS depending on the way

recommendations are generated and delivered is not trivial.

This research experimentally studies whether the recommendation

task affects the comparison between a CARS and a RS

performance and which conditions can affect the relative

performance. To this aim, we have compared the performance of

three approaches to CARS, namely a pre-filtering and two post-

filtering methods, by using two recommendation tasks (“top-k”,

which recommends only a subset of items taken from those most

likely to be purchased, and “find-all”, which recommends all the

items that are potentially good for a customer). The experiments

were done across several conditions and using three data sets,

corresponding to three different e-commerce applications.

2. PRIOR RESEARCH
Recommender systems were classified based on the goal they are

designed for: recommending good items, optimizing utility and

predicting ratings [9]. In this paper we focus on the most common

one, i.e., to recommend good items to users [6, 9]. There are many

business applications pursuing this goal, such as Amazon or

Netflix. In these cases, two tasks can be considered [5]. The first

aims at recommending the “top-k” items. In this case only a subset

of all the recommendable items is shown to customers. The key

assumption is that although a large number of items may appeal to

the user, she does not have enough resources (e.g., time) to

consider them all. Therefore, the main important issue is to focus

on the most interesting items and not to present any disliked item

[4, 8]. The second task aims at recommending “all good items”

and it is common in research and business [6, 5, 9]. In the “find-

all” task it is important to recommend all the potential good items

and avoid to miss a relevant item [5].

Companies can choose one of the two tasks because of business

and technology constraints, such as the communication channel,

the space available, the frequency and other customers constraints.

For instance, Amazon presents its customers the recommended

items on Web pages where many items (“all good items”) can be

listed. Toysdirect lists only a few (the top-k) recommendations in
CARS-2010, September 26, 2010, Barcelona, Spain.

Copyright is held by the author/owner(s).

an e-mailed newsletter. Companies sending recommendations via

sms focus only on the top-one product. When recommendations

are e-mailed frequently, listing all the good items might annoy

customers, depending on the time they want to spend in the early

stage of the purchasing process. Since the performance of RSs

should be compared by different metrics in different tasks [5], we

believe that studying the comparison between CARSs and RSs in

different task is important for companies because the adoption of

a specific task can affect the decision of using a CARS or a RS.

Other factors may affect the way recommendations are generated,

such as the misclassification costs and the overall number of

recommendable items. In some cases, the cost of false positives is

higher than that of false negatives. For instance, when TV shows

are recommended, customers may feel offended by wrong

recommendations, but can tolerate the absence of a good show. In

this case, the major problem is avoiding wrong recommendations,

i.e., minimizing the number of false positives. Companies should

adopt a CARS or a RS depending on which one presents a higher

Precision, which is defined as number of true positives divided by

the sum of true positives and false positives. In other cases, the

cost of false positives is lower than that of false negatives. For

instance, a Website recommending scientific papers should be

concern to not missing any relevant item (i.e., minimizing false

negatives). Therefore, a CARS or a RS should be adopted

depending on the Recall, which is defined as number of true

positives divided by the sum of true positives and false negatives.

Recommendations can be generated by picking items from either a

small or a great set of products. For instance, Amazon presents

both types of recommendations. The “new for you” box includes

items taken from the latest releases, while the “recommended for

you” presents items from the whole catalogue. The catalogue is

much wider than the latest releases list. LeShop.ch recommends

items that a customer has never bought before during the

navigation, and items that the customer regularly bought in the

past at the checkout. The number of recommendable items is

much lower in the first case than in the second. This can affect the

performance of a CARS compared to that of a RS because it can

affect the sparsity of the User-Item matrix and, in turn, the

recommendation performance [11, 1, 2].

The usage of contextual information in CARS can be broadly

classified into two groups: recommendation via context-driven

querying and search [13], recommendation via contextual

preference elicitation and estimation [1, 3]. These methods are

reviewed in [3] and [2]. In [2] the following three different

algorithmic paradigms for incorporating contextual information

into the recommendation process are presented: (i) contextual pre-

filtering, where context is used to filter out irrelevant ratings

before they are used for computing recommendations with

standard methods; (ii) contextual post-filtering, where context is

used after the standard recommendation methods are applied to

the data; (iii) contextual modeling, where context is used inside

the algorithms that generate recommendations. We used pre-

filtering and post-filtering, as they are the only approaches which

have been studied so far [11].

Although many practical examples exist of “top-k” and “find-all”

tasks and much literature have tackled the issue of which

performance metrics should be used in each of the two

recommendation tasks [6, 5], no experimental study have raised

the question of whether context should be included in a RS

depending on the recommendation task. Part of this research

comes from our previous experiments reported in [11]. However,

there are several important differences. First, the goal of [11] was

to compare two CARS, while this research goal is to argue in

which conditions context should be included. Second, [11] only

considered the “find-all” task, while this research also considers

the “top-k” task. Finally, [11] considered only two data sets.

3. EXPERIMENTAL SETUP
We compared the performance of an un-contextual RS and three

CARSs by varying several settings: the recommendation task

(“top-k” vs. “find-all”), the number of overall recommendable

items (by using three data sets with different numbers), three

performance metrics (Precision, Recall and F-measure), the

number of items in the recommendations list (“k” in a top-k task),

and the granularity of the context (in the CARS). We decided to

focus our experiment on the “find all” and “top-k” strategies since

they are the most popular in business and research. We selected

three datasets coming from three e-commerce applications. The

first (DB1) comes from a portal commercially operating in an

European country which sells electronic products to

approximately 120,000 users and contains about 220,000

purchasing transactions. The second (DB2) consists of various

purchasing transactions performed by students on the Amazon

website in a controlled environment that also recorded the

contextual information of the purchases via a special-purpose

browser developed for the project. More information about this

dataset and the browser can be found in [10]. The third dataset

(DB3) comes from an e-commerce portal which sells comics and

comics-related products (e.g., t-shirts, DVDs), including about

50,000 transactions and 5,000 users. We used product categories

instead of single items in our study because the e-commerce

applications have huge numbers of items (hundreds of thousands).

Therefore, if single items were used, the conversion from implicit

to explicit ratings would not work due to the low amount of rated

data. Items were aggregated according to the Web site catalogues:

14 categories for DB1, 24 for DB2, 136 for DB3.

The datasets were used also in order to perform the comparison by

using different contextual variables and granularity. In DB1 we

used the time of the year as a contextual variable. Its hierarchical

structure is presented in Fig. 1(a). This structure defines two

levels of contextual granularity: C1 (coarser level) and C2 (finer

level). The classification into Summer or Winter and Holiday or

Not Holiday was based on the experiences of the CEO of the e-

commerce website that we used in our study. The contextual

(a) (b)

C1

C2

(c)

Figure 1. Hierarchical structure of the contextual attributes (a) Time of the day, (b) Intent of purchase and (c) Store.

information in DB2 was the intent of a purchase, collected by the

above-mentioned special purpose browser. Its hierarchical

structure is in Fig. 1(b). In DB3 we used the store (i.e., the section

in the Web site where products are bought) as a contextual

variable: the product may be bought in the “Wearing apparel”,

“DVD”, “Miniseries” or “Special issues” section (store) of the

portal (see Fig. 1(c)). This is a contextual variable because

customers’ behavior changes when navigating and buying

products in different sections of the Web site. We performed t-

tests in order to determine if context matters. All the comparisons

were significant at 95%. The utilities of items for the customers

were measured by the purchasing frequencies, according to the

transaction-based RS approach [7]. This measure serves as a

proxy for the rating, as it measures how much a customer likes a

product. Estimations of unknown utilities were done by using a

standard user-based collaborative filtering (CF) method [12].

According to CF, the neighborhood was formed using the cosine

similarity. After several experiments its size was set to 80 users.

When comparing the traditional RS and the CARSs, we used one

pre-filtering and two post-filtering methods (Weight and Filter).

In the pre-filtering approach the contextual information is used as

a label for filtering out those ratings that do not correspond to the

specified contextual information [2]. This filtering is done before

the main recommendation method is launched on the remaining

data that passed the filter. We used the exact pre-filtering method

(EPF) [2]. For the post-filtering case, according to [2], we first

ignored the contextual information in the data and applied a

traditional 2D recommendation method, such as CF, on the whole

un-contextual dataset. Once the unknown ratings are estimated

using the 2D method and the un-contextual recommendations are

produced, we “contextualized” these recommendations. Various

methods exist for contextualizing the 2D recommendations, as

described in [2]. We focused on two approaches, called Weight

and Filter. Detailed information on EPF, Weight and Filter

methods is in [11]. We used the same user-based CF method for

estimating unknown ratings in all the CARSs.

Finally, we measured Precision, Recall and F-measure [6]. In

order to compute Precision and Recall, we set a threshold between

relevant and irrelevant items. We assumed that if an item is

purchased more than onece, it is relevant (the threshold is set at

1). Therefore, if the system predicts a rating greater or equal to 2,

we decide to “recommend” that item, otherwise we do not. Then,

we verify if the recommended item was actually purchased in the

validation set, and if it is so we consider it as a correct

recommendation, otherwise as bad. We did not use MAE and

RMSE as they are not applicable to the “top-k” strategy because

they are calculated on the whole matrix of predicted ratings.

4. RESULTS
Figure 2 reports the comparison between the two CARSs

(described in section 4) and the RS in the “top-k” task, for k=1

(Fig. 2a) and k=4 (Fig. 2b), while Figure 3 reports the same

comparison in the “find-all” task. We made experiments in the

“top-k” task with k=2 and k=3 as well, but for the sake of brevity

we present two of the four cases. Graphs are reported for each

data set (DB1, 2 and 3). We decided to show both Precision and

Recall, in addition to F-measure, since we expected that the

comparison also depends on the specific metric used, and because

a company may choose to maximize that metric depending on the

business settings. When a “top-k” task is used and the number of

items in the recommendation list is very low (Fig. 2a), the un-

contextual RS dominates the CARS across each experimental

setting in DB1 and DB2 in terms of all the three performance

measures, while the Filter and EPF CARSs dominate the RS in

DB3 (Fig. 2a). When k increases to 4 (Fig. 2b), the un-contextual

RS always dominates the CARSs in terms of Recall, while the

Precision and F-measure of RS and CARSs tend to become

similar in DB1 and DB2. In DB3 the Filter and EPF CARSs

dominate the RS. On the contrary, when a “find-all” task is used,

the CARSs outperform the RS in terms of Precision and F-

measure in all data sets (depending on the CARS), while the RS

presents a higher Recall in the three datasets.

The results allow us to answer the issue of whether context should

be included in a RS depending on the recommendation task and

other conditions. Firstly, the comparison between a RS and a

CARS does depend on the recommendation task. Secondly, the

main conditions that affect the comparison are the overall number

of recommendable items, number of items in the recommendation

list and the specific performance that has to be measured. In the

“find-all” task the comparison seems to depend on the

performance, whereas in the “top-k” task the comparison depends

on the overall number of recommendable items (i.e., the data set)

and the number of items in the recommendation list (i.e., the value

of k). In fact, in the “find-all” task two out of three CARSs (Filter

and EPF) always outperform the RS in terms of F-measure and

Precision, while the RS is better in terms of Recall (see Fig. 3).

This happens independently of the number of items, i.e. in all

three data sets. In the “top-k” task, when the overall number of

items is low and only one item is in the recommendation list (DB1

and DB2 in Fig.2a)) the RS is always preferable to the CARSs.

When k increases to 4, the F-measure and Precision of the CARSs

become greater (or equivalent) to those of the RS, while the

Recall of the RS is still greater (DB1 and DB2 in Fig.2b). When

the overall number of recommendable items increases (DB3 in

Fig.2a and 2b), all the performance measures of the CARSs are

greater than those of the RS. The approach to CARS and the

context granularity do not affect the comparison significantly.

5. CONCLUSIONS
In this research we experimentally compared a RS to three CARSs

by using two different recommendation tasks (“top-k” and “find-

all”), three data sets coming from three different e-commerce

applications and different contextual variables. The results show

that the comparison depends on the recommendation task. In the

“find-all” task, CARSs are preferable if the performance has to be

measured in terms of F-measure and Precision. In the “top-k”

task, RSs are preferable only when the overall number of

recommendable items is low and very few items (less than four)

may be put in the recommendable list.

Although generalizing these findings to any business application

is hard, the findings suggest that companies that aim at improving

the recommendation performance by including context in a RS

should consider the recommendation task and some characteristics

of the business applications, namely the overall number of items,

the number of items in the list, the performance.

Although CARSs seem to be often preferable to RSs, in certain

particular conditions, using a RS is preferable to using a CARS.

Further research is needed to strengthen the conclusions. A model

should be defined in order to associate several business conditions

with each recommendation task and performance metrics.

Customer satisfaction-related performance metrics should be as

well as other CARS algorithms. Other contextual aspects and non

e-commerce domains should be considered.

0

0.2

0.4

0.6

0.8

1

F-MEASURE

Un-contextual

Weight PoF

Filter PoF

EPF0

0.2

0.4

0.6

0.8

1

PRECISION

0

0.2

0.4

0.6

0.8

1

RECALL

0

0.1

0.2

0.3

0.4

F-MEASURE

Un-contextual

Weight PoF

Filter PoF

EPF
0

0.2

0.4

0.6

0.8

1

PRECISION

0

0.1

0.2

0.3

0.4

RECALL

0.1

0.2

0.3

0.4

0.5

0.6

F-MEASURE

Un-contextual

Weight PoF

Filter PoF

EPF0.1

0.2

0.3

0.4

0.5

0.6

PRECISION

0.1

0.2

0.3

0.4

0.5

RECALL

0

0.2

0.4

0.6

0.8

1

F-MEASURE

Un-contextual

Weight PoF

Filter PoF

EPF0

0.2

0.4

0.6

0.8

1

PRECISION

0

0.2

0.4

0.6

0.8

1

RECALL

0.1

0.2

0.3

0.4

0.5

0.6

F-MEASURE

Un-contextual

Weight PoF

Filter PoF

EPF0

0.1

0.2

0.3

0.4

0.5

0.6

PRECISION

0.2

0.3

0.4

0.5

0.6

0.7

RECALL

0.1

0.2

0.3

0.4

0.5

F-MEASURE

Un-contextual

Weight PoF

Filter PoF

EPF0.1

0.2

0.3

0.4

0.5

PRECISION

0.3

0.4

0.5

0.6

0.7

RECALL

a)

b)

DB1

DB2

DB3

DB1

DB2

DB3

Figure 2. Comparison between RS and CARSs using a) top-1 and b) top-4 recommendation tasks for the three data sets.

6. REFERENCES
[1] Adomavicius, G., Sankaranarayanan, R., Sen S., and

Tuzhilin, A. 2005. Incorporating contextual information in

recommender systems using a multidimensional approach.

ACM T. Inform. Syst. 23, 1, 103-145.

[2] Adomavicius G., and Tuzhilin, A. 2008. Context-Aware

Recommender Systems. Handbook on Recommender

Systems, Springer, 2010 (appeared as a tutorial at the 2008

ACM Conference on Recommender systems, 335-336).

[3] Anand, A., and Mobasher, B. 2007. Contextual

Recommendation. From Web to Social Web: Discovering

and Deploying User and Content Profiles, Springer, Berlin.

[4] Deshpande, M., and Karypis, G. 2004. Item-Based Top-N

Recommendation Algorithms, ACM Trans. Information

Systems 22, 1, 143-177.

[5] Gunawardana, A., and Shani, G. 2009. A survey of accuracy

evaluation metrics of recommendation tasks, J. Mach. Learn.

Res. 10 (December 2009), 2935-2962.

[6] Herlocker, J.L., Konstan, J.A., Terveen, L.G., and Riedl, J.T.

2004. Evaluating collaborative filtering recommender

systems, ACM T. Inform. Syst. 22, 1, 5-53.

[7] Huang, Z., Li, X., and Chen, H., 2005. Link prediction

approach to collaborative filtering, Proceedings of the 5th

ACM/IEEE-CS conference on Digital libraries, 141-142.

[8] Linden, G., Smith, B., and York, J., 2003. Amazon.com

Recommendations: Item-to-Item Collaborative Filtering,

IEEE Internet Computing, Jan./Feb. 2003.

[9] McNee, S. M., Riedl, J., and Konstan, J. K. 2006. Making

recommendations better: an analytic model for human-

recommender interaction, In CHI ’06 Extended Abstracts on

Human Factors in Computing Systems.

[10] Palmisano, C., Tuzhilin, A., and Gorgoglione, M., 2008.

Using Context to Improve Predictive Models of Customers

in Personalization Applications, IEEE T. Knowl. Data En..

20, 11, 1535-1549.

[11] Panniello, U., Tuzhilin, A., Gorgoglione, M., Palmisano, C.,

and Pedone, A., 2009. Experimental comparison of pre- vs.

post-filtering approaches in context-aware recommender

systems, Proceedings of RecSys ’09, 265-268.

[12] Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., and

Riedl, J., 1994. GroupLens: An Open Architecture for

Collaborative Filtering of Netnews, Proceedings of Conf. on

Computer Supported Cooperative Work, 175-186.

[13] van Setten, M., Pokraev, S., and Koolwaaij, J., 2004.

Context-aware recommendations in the mobile tourist

application COMPASS, Adaptive Hypermedia, 235–244.

0.0

0.2

0.4

0.6

0.8

1.0

PRECISION

Un-contextual

Weight PoF

Filter PoF

EPF
0.5

0.6

0.7

0.8

0.9

1.0

RECALL

Un-contextual

Weight PoF

Filter PoF

EPF
0.0

0.2

0.4

0.6

0.8

1.0

F-MEASURE

Un-contextual

Weight PoF

Filter PoF

EPF

0

0.1

0.2

0.3

0.4

0.5

PRECISION

Un-contextual

Weight PoF

Filter PoF

EPF

0.3

0.4

0.5

0.6

0.7

0.8

0.9

RECALL

Un-contextual

Weight PoF

Filter PoF

EPF

0

0.1

0.2

0.3

0.4

0.5

0.6

F-MEASURE

Un-contextual

Weight PoF

Filter PoF

EPF

0.1

0.2

0.3

0.4

0.5

PRECISION

Un-contextual

Weight PoF

Filter PoF

EPF
0.3

0.4

0.5

0.6

0.7

0.8

RECALL

Un-contextual

Weight PoF

Filter PoF

EPF
0

0.1

0.2

0.3

0.4

0.5

0.6

F-MEASURE

Un-contextual

Weight PoF

Filter PoF

EPF

DB1

DB2

DB3

Figure 3. Comparison between RS and CARSs using a “find all good items” recommendation task for the three data sets.

