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ABSTRACT 

There is growing interest on improving the performance of 

recommender systems (RSs) by using context-aware recommender 

systems (CARS). However, companies may adopt different 

recommendation tasks, from recommending few items of very 

high interest to recommending all possibly interesting items. 

These tasks are influenced by some characteristics of the 

application and other business conditions. The aim of this 

research is to experimentally investigate whether a CARS always 

outperforms a traditional RS or if it happens only in some specific 

recommendation tasks. To this aim, we have compared the 

performance of a RS and three approaches to CARS, namely a 

pre-filtering and two post-filtering methods, by using two 

recommendation tasks, the first recommending only the top-k 

items, the second recommending all the items potentially good for 

the customer. Experiments were performed across several 

conditions and using three datasets from e-commerce applications.  
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1. INTRODUCTION 
Context-Aware Recommender Systems (CARS) are receiving 

growing attention by researchers and companies, as they were 

proved to improve the recommendation performance in several 

conditions. On the industrial side, companies may deliver 

recommendations in different ways depending on factors related 

to the business application. For instance, frequently 

recommending many items may either increase a customer’s 

interest and knowledge on products or annoy her causing an 

opposite reaction. On the other hand, few recommendations may 

cause the company to lose sales opportunities, but also increase a 

customer’s attention. Similarly, recommending only the new 

products the customer has never seen before may be useful when 

products are rarely purchased more than once, such as comics 

books. When repeated purchases are frequent, e.g., in e-grocery, 

companies find more useful to remind customers to buy products 

they have already bought in the past. In general, different 

recommendation strategies may have different effects.  

Companies adopting Recommender Systems (RS) are interested in 

increasing the recommendation performance. Including context in 

the recommendation engine may improve performance under 

certain circumstances [11, 1, 2]. However, we know from prior 

research that CARSs often outperform un-contextual RSs, but not 

in all conditions [11]. As an example, although the F-measure of a 

CARS is very often greater than that of a RS, Precision and Recall 

can present opposite figures. Hence, in some conditions (e.g., 

when not missing an important recommendation is critical) a 

company should prefer to improve Recall rather than Precision, 

and the usage of a CARS would be detrimental. Therefore, the 

issue of whether a CARS outperform a RS depending on the way 

recommendations are generated and delivered is not trivial.  

This research experimentally studies whether the recommendation 

task affects the comparison between a CARS and a RS 

performance and which conditions can affect the relative 

performance. To this aim, we have compared the performance of 

three approaches to CARS, namely a pre-filtering and two post-

filtering methods, by using two recommendation tasks (“top-k”, 

which recommends only a subset of items taken from those most 

likely to be purchased, and “find-all”, which recommends all the 

items that are potentially good for a customer). The experiments 

were done across several conditions and using three data sets, 

corresponding to three different e-commerce applications.  

2. PRIOR RESEARCH 
Recommender systems were classified based on the goal they are 

designed for: recommending good items, optimizing utility and 

predicting ratings [9]. In this paper we focus on the most common 

one, i.e., to recommend good items to users [6, 9]. There are many 

business applications pursuing this goal, such as Amazon or 

Netflix. In these cases, two tasks can be considered [5]. The first 

aims at recommending the “top-k” items. In this case only a subset 

of all the recommendable items is shown to customers. The key 

assumption is that although a large number of items may appeal to 

the user, she does not have enough resources (e.g., time) to 

consider them all. Therefore, the main important issue is to focus 

on the most interesting items and not to present any disliked item 

[4, 8]. The second task aims at recommending “all good items” 

and it is common in research and business [6, 5, 9]. In the “find-

all” task it is important to recommend all the potential good items 

and avoid to miss a relevant item [5].  

Companies can choose one of the two tasks because of business 

and technology constraints, such as the communication channel, 

the space available, the frequency and other customers constraints. 

For instance, Amazon presents its customers the recommended 

items on Web pages where many items (“all good items”) can be 

listed. Toysdirect lists only a few (the top-k) recommendations in 
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an e-mailed newsletter. Companies sending recommendations via 

sms focus only on the top-one product. When recommendations 

are e-mailed frequently, listing all the good items might annoy 

customers, depending on the time they want to spend in the early 

stage of the purchasing process. Since the performance of RSs 

should be compared by different metrics in different tasks [5], we 

believe that studying the comparison between CARSs and RSs in 

different task is important for companies because the adoption of 

a specific task can affect the decision of using a CARS or a RS.  

Other factors may affect the way recommendations are generated, 

such as the misclassification costs and the overall number of 

recommendable items. In some cases, the cost of false positives is 

higher than that of false negatives. For instance, when TV shows 

are recommended, customers may feel offended by wrong 

recommendations, but can tolerate the absence of a good show. In 

this case, the major problem is avoiding wrong recommendations, 

i.e., minimizing the number of false positives. Companies should 

adopt a CARS or a RS depending on which one presents a higher 

Precision, which is defined as number of true positives divided by 

the sum of true positives and false positives. In other cases, the 

cost of false positives is lower than that of false negatives. For 

instance, a Website recommending scientific papers should be 

concern to not missing any relevant item (i.e., minimizing false 

negatives). Therefore, a CARS or a RS should be adopted 

depending on the Recall, which is defined as number of true 

positives divided by the sum of true positives and false negatives. 

Recommendations can be generated by picking items from either a 

small or a great set of products. For instance, Amazon presents 

both types of recommendations. The “new for you” box includes 

items taken from the latest releases, while the “recommended for 

you” presents items from the whole catalogue. The catalogue is 

much wider than the latest releases list. LeShop.ch recommends 

items that a customer has never bought before during the 

navigation, and items that the customer regularly bought in the 

past at the checkout. The number of recommendable items is 

much lower in the first case than in the second. This can affect the 

performance of a CARS compared to that of a RS because it can 

affect the sparsity of the User-Item matrix and, in turn, the 

recommendation performance [11, 1, 2].  

The usage of contextual information in CARS can be broadly 

classified into two groups: recommendation via context-driven 

querying and search [13], recommendation via contextual 

preference elicitation and estimation [1, 3]. These methods are 

reviewed in [3] and [2]. In [2] the following three different 

algorithmic paradigms for incorporating contextual information 

into the recommendation process are presented: (i) contextual pre-

filtering, where context is used to filter out irrelevant ratings 

before they are used for computing recommendations with 

standard methods; (ii) contextual post-filtering, where context is 

used after the standard recommendation methods are applied to 

the data; (iii) contextual modeling, where context is used inside 

the algorithms that generate recommendations. We used pre-

filtering and post-filtering, as they are the only approaches which 

have been studied so far [11].  

Although many practical examples exist of “top-k” and “find-all” 

tasks and much literature have tackled the issue of which 

performance metrics should be used in each of the two 

recommendation tasks [6, 5], no experimental study have raised 

the question of whether context should be included in a RS 

depending on the recommendation task. Part of this research 

comes from our previous experiments reported in [11]. However, 

there are several important differences. First, the goal of [11] was 

to compare two CARS, while this research goal is to argue in 

which conditions context should be included. Second, [11] only 

considered the “find-all” task, while this research also considers 

the “top-k” task. Finally, [11] considered only two data sets.  

3. EXPERIMENTAL SETUP 
We compared the performance of an un-contextual RS and three 

CARSs by varying several settings: the recommendation task 

(“top-k” vs. “find-all”), the number of overall recommendable 

items (by using three data sets with different numbers), three 

performance metrics (Precision, Recall and F-measure), the 

number of items in the recommendations list (“k” in a top-k task), 

and the granularity of the context (in the CARS). We decided to 

focus our experiment on the “find all” and “top-k” strategies since 

they are the most popular in business and research. We selected 

three datasets coming from three e-commerce applications. The 

first (DB1) comes from a portal commercially operating in an 

European country which sells electronic products to 

approximately 120,000 users and contains about 220,000 

purchasing transactions. The second (DB2) consists of various 

purchasing transactions performed by students on the Amazon 

website in a controlled environment that also recorded the 

contextual information of the purchases via a special-purpose 

browser developed for the project. More information about this 

dataset and the browser can be found in [10]. The third dataset 

(DB3) comes from an e-commerce portal which sells comics and 

comics-related products (e.g., t-shirts, DVDs), including about 

50,000 transactions and 5,000 users. We used product categories 

instead of single items in our study because the e-commerce 

applications have huge numbers of items (hundreds of thousands). 

Therefore, if single items were used, the conversion from implicit 

to explicit ratings would not work due to the low amount of rated 

data. Items were aggregated according to the Web site catalogues: 

14 categories for DB1, 24 for DB2, 136 for DB3.  

The datasets were used also in order to perform the comparison by 

using different contextual variables and granularity. In DB1 we 

used the time of the year as a contextual variable. Its hierarchical 

structure is presented in Fig. 1(a). This structure defines two 

levels of contextual granularity: C1 (coarser level) and C2 (finer 

level). The classification into Summer or Winter and Holiday or 

Not Holiday was based on the experiences of the CEO of the e-

commerce website that we used in our study. The contextual 

(a) (b)

C1

C2

(c)

Figure 1. Hierarchical structure of the contextual attributes (a) Time of the day, (b) Intent of purchase and (c) Store. 



information in DB2 was the intent of a purchase, collected by the 

above-mentioned special purpose browser. Its hierarchical 

structure is in Fig. 1(b). In DB3 we used the store (i.e., the section 

in the Web site where products are bought) as a contextual 

variable: the product may be bought in the “Wearing apparel”, 

“DVD”, “Miniseries” or “Special issues” section (store) of the 

portal (see Fig. 1(c)). This is a contextual variable because 

customers’ behavior changes when navigating and buying 

products in different sections of the Web site. We performed t-

tests in order to determine if context matters. All the comparisons 

were significant at 95%. The utilities of items for the customers 

were measured by the purchasing frequencies, according to the 

transaction-based RS approach [7]. This measure serves as a 

proxy for the rating, as it measures how much a customer likes a 

product. Estimations of unknown utilities were done by using a 

standard user-based collaborative filtering (CF) method [12]. 

According to CF, the neighborhood was formed using the cosine 

similarity. After several experiments its size was set to 80 users. 

When comparing the traditional RS and the CARSs, we used one 

pre-filtering and two post-filtering methods (Weight and Filter). 

In the pre-filtering approach the contextual information is used as 

a label for filtering out those ratings that do not correspond to the 

specified contextual information [2]. This filtering is done before 

the main recommendation method is launched on the remaining 

data that passed the filter. We used the exact pre-filtering method 

(EPF) [2]. For the post-filtering case, according to [2], we first 

ignored the contextual information in the data and applied a 

traditional 2D recommendation method, such as CF, on the whole 

un-contextual dataset. Once the unknown ratings are estimated 

using the 2D method and the un-contextual recommendations are 

produced, we “contextualized” these recommendations. Various 

methods exist for contextualizing the 2D recommendations, as 

described in [2]. We focused on two approaches, called Weight 

and Filter. Detailed information on EPF, Weight and Filter 

methods is in [11]. We used the same user-based CF method for 

estimating unknown ratings in all the CARSs.  

Finally, we measured Precision, Recall and F-measure [6]. In 

order to compute Precision and Recall, we set a threshold between 

relevant and irrelevant items. We assumed that if an item is 

purchased more than onece, it is relevant (the threshold is set at 

1). Therefore, if the system predicts a rating greater or equal to 2, 

we decide to “recommend” that item, otherwise we do not. Then, 

we verify if the recommended item was actually purchased in the 

validation set, and if it is so we consider it as a correct 

recommendation, otherwise as bad. We did not use MAE and 

RMSE as they are not applicable to the “top-k” strategy because 

they are calculated on the whole matrix of predicted ratings. 

4. RESULTS 
Figure 2 reports the comparison between the two CARSs 

(described in section 4) and the RS in the “top-k” task, for k=1 

(Fig. 2a) and k=4 (Fig. 2b), while Figure 3 reports the same 

comparison in the “find-all” task. We made experiments in the 

“top-k” task with k=2 and k=3 as well, but for the sake of brevity 

we present two of the four cases. Graphs are reported for each 

data set (DB1, 2 and 3). We decided to show both Precision and 

Recall, in addition to F-measure, since we expected that the 

comparison also depends on the specific metric used, and because 

a company may choose to maximize that metric depending on the 

business settings. When a “top-k” task is used and the number of 

items in the recommendation list is very low (Fig. 2a), the un-

contextual RS dominates the CARS across each experimental 

setting in DB1 and DB2 in terms of all the three performance 

measures, while the Filter and EPF CARSs dominate the RS in 

DB3 (Fig. 2a). When k increases to 4 (Fig. 2b), the un-contextual 

RS always dominates the CARSs in terms of Recall, while the 

Precision and F-measure of RS and CARSs tend to become 

similar in DB1 and DB2. In DB3 the Filter and EPF CARSs 

dominate the RS. On the contrary, when a “find-all” task is used, 

the CARSs outperform the RS in terms of Precision and F-

measure in all data sets (depending on the CARS), while the RS 

presents a higher Recall in the three datasets. 

The results allow us to answer the issue of whether context should 

be included in a RS depending on the recommendation task and 

other conditions. Firstly, the comparison between a RS and a 

CARS does depend on the recommendation task. Secondly, the 

main conditions that affect the comparison are the overall number 

of recommendable items, number of items in the recommendation 

list and the specific performance that has to be measured. In the 

“find-all” task the comparison seems to depend on the 

performance, whereas in the “top-k” task the comparison depends 

on the overall number of recommendable items (i.e., the data set) 

and the number of items in the recommendation list (i.e., the value 

of k). In fact, in the “find-all” task two out of three CARSs (Filter 

and EPF) always outperform the RS in terms of F-measure and 

Precision, while the RS is better in terms of Recall (see Fig. 3). 

This happens independently of the number of items, i.e. in all 

three data sets. In the “top-k” task, when the overall number of 

items is low and only one item is in the recommendation list (DB1 

and DB2 in Fig.2a)) the RS is always preferable to the CARSs. 

When k increases to 4, the F-measure and Precision of the CARSs 

become greater (or equivalent) to those of the RS, while the 

Recall of the RS is still greater (DB1 and DB2 in Fig.2b). When 

the overall number of recommendable items increases (DB3 in 

Fig.2a and 2b), all the performance measures of the CARSs are 

greater than those of the RS. The approach to CARS and the 

context granularity do not affect the comparison significantly.  

5. CONCLUSIONS 
In this research we experimentally compared a RS to three CARSs 

by using two different recommendation tasks (“top-k” and “find-

all”), three data sets coming from three different e-commerce 

applications and different contextual variables. The results show 

that the comparison depends on the recommendation task. In the 

“find-all” task, CARSs are preferable if the performance has to be 

measured in terms of F-measure and Precision. In the “top-k” 

task, RSs are preferable only when the overall number of 

recommendable items is low and very few items (less than four) 

may be put in the recommendable list.  

Although generalizing these findings to any business application 

is hard, the findings suggest that companies that aim at improving 

the recommendation performance by including context in a RS 

should consider the recommendation task and some characteristics 

of the business applications, namely the overall number of items, 

the number of items in the list, the performance.  

Although CARSs seem to be often preferable to RSs, in certain 

particular conditions, using a RS is preferable to using a CARS.  



Further research is needed to strengthen the conclusions. A model 

should be defined in order to associate several business conditions 

with each recommendation task and performance metrics. 

Customer satisfaction-related performance metrics should be as 

well as other CARS algorithms. Other contextual aspects and non 

e-commerce domains should be considered. 
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Figure 2. Comparison between RS and CARSs using a) top-1 and b) top-4 recommendation tasks for the three data sets. 
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Figure 3. Comparison between RS and CARSs using a “find all good items” recommendation task for the three data sets. 


