
Movie Recommendation using Random Walks
over the Contextual Graph

Toine Bogers
Information Systems & Interaction Design

Royal School of Library and Information Science
Birketinget 6, DK-2300
Copenhagen, Denmark

tb@iva.dk

ABSTRACT
Recommender systems have become an essential tool in fight-
ing information overload. However, the majority of recom-
mendation algorithms focus only on using ratings informa-
tion, while disregarding information about the context of
the recommendation process. We present ContextWalk, a
recommendation algorithm that makes it easy to include dif-
ferent types of contextual information. It models the brows-
ing process of a user on a movie database website by taking
random walks over the contextual graph. We present our
approach in this paper and highlight a number of future
extensions with additional contextual information.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: H.3.1 Con-
tent Analysis and Indexing; H.3.3 Information Search and
Retrieval; H.3.4 Systems and Software

General Terms
Algorithms, Performance

Keywords
Recommender systems, context, random walks, contextual
recommendation, movie recommendation

1. INTRODUCTION
Recommender systems are a form of personalized infor-

mation filtering technology and have become an important
tool for successfully dealing with the problem of information
overload. Recommender systems have been applied to many
different domains [9], with movie recommendation being an
especially productive domain for recommendation technol-
ogy. Some of the most popular data sets have come from
the movie domain, such as the Movielens data set1 and more
1http://www.grouplens.org/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2010 by the author(s).

recently the Netflix competition2, and they have resulted in
a large body of work on movie recommendation. However,
the majority of these and other approaches have focused ex-
clusively on using ratings information for generating recom-
mendations and improving the algorithms that use this type
of information. While ratings are important, a user’s enjoy-
ment of a recommended movie is not exclusively dependent
on how he3 previously rated his movies.
What is missing from the majority of existing recommen-

dation approaches is context. The context of the recom-
mendation process can encompass a wide range of informa-
tion, such as the time and location the recommendations are
made, as well as the company the user requesting the recom-
mendations is in. User context can be equally important to
the recommendation process, such as mood, demographics,
or social network information. Friendship relations between
users have for instance been shown to be beneficial to recom-
mendation performance [7, 11]. A third type of contextual
information involves the context of the movies themselves,
such as actor, director, and writer relations, or specific movie
metadata, such as color and language.
So far, however, there have been few approaches that can

incorporate such a variety of contextual information. Most
recommendation algorithms have been designed to work with
explicit ratings data or implicit usage data, due to the rel-
ative abundance of this type of information. In contrast,
contextual information tends to be more difficult to collect,
and is therefore often disregarded or left as future work. A
second problem is that while it is easy to label certain in-
formation as context, it is much more difficult to produce
a computable formalization of contextual information. This
makes it difficult to explicitly model the great variety in
contextual information.
In this paper, we present ContextWalk, a recommenda-

tion algorithm that attempts to address the latter problem
by allowing for the combination of ratings information with
many different contextual factors. ContextWalk is based
on taking Markov random walks over the contextual graph.
In our algorithm, we model the browsing process of a user on
a movie database website. We use the links between the dif-
ferent contextual objects on such websites—such as users,
items, tags, genres, and actors—to construct a contextual
graph. We then take a random walk on this graph, tempered
by self-transitions to produce a probability distribution over

2http://www.netflixprize.com/
3In the rest of this paper we use ‘he’ and ‘his’ to refer to
both genders.

http://www.grouplens.org/
http://www.netflixprize.com/

a user’s unseen movies. The contextual graph could easily
be expanded to include additionaltypes of contextual infor-
mation, making it easy to incorporate more context into the
recommendation process.
In summary, we make the following three contributions:

• We propose ContextWalk, a recommendation algo-
rithm based on Markov random walks that can com-
bine ratings information with contextual information,
such as tags, movie genre, actor, or director informa-
tion to recommend movies.

• ContextWalk can easily be extended to include ad-
ditional contextual features, such as time, social net-
work information, and mood information.

• ContextWalk can be used for other recommendation
tasks, such as tag recommendation or actor-to-movie
recommendation, without the need for retraining or
changing the recommendation model.

The remainder of this paper is structured as follows. In
the next section, we explain our contextual recommendation
model in more detail. Section 3 describes how our algorithm
could be extended with additional contextual information.
Section 4 discusses the most relevant related work. We con-
clude in Section 5.

2. CONTEXTUAL RANDOM WALKS
In our contextual recommendation model we model user

behavior in a common scenario: browsing a movie database
website such as the Internet Movie Database4 (IMDB) or
RottenTomatoes.com5. Movie database websites are a pop-
ular destination on the Web and browsing a movie database
website can aid a user in explorating and discovering new
movies to watch. A user could, for instance, look up the
page of a new movie he recently enjoyed and find more in-
formation about it. Perhaps he really enjoyed the perfor-
mance of one of the actresses in that movie, which could
lead him to explore the actress’ profile to find other inter-
esting movies she might have starred in. Reviews, cast lists,
and ratings could then guide the user to decide whether or
not to see any of her other movies. Another possibility could
be navigating to different movies based on one of the tags
assigned to the original movie or the movie genre. Such a
movie database website and the links between the different
objects represented on them can be represented by a multi-
partite network (or contextual graph) such as the one shown
in Figure 1.
The multipartite network in Figure 1 visualizes only a

small number of different node types; such networks could
easily be extended to included many other types of objects
representing contextual information, such as writer(s), lan-
guage, country of origin, production company, etc. However,
in describing our contextual recommendation algorithm we
will restrict ourselves to five types of contextual objects that
are related to each other in some way on a movie database
website: users (U), items6 (I), tags (T), movie genres (G),
4http://www.imdb.com/
5http://www.rottentomatoes.com/
6In the context of this paper items are the same as movies.
We use the term ‘item’ instead of ‘movie’ to keep in line
with the accepted terminology in recommender systems.

GENREUSER TAG

A

ACTOR

A

A

AA

A

MOVIE

Figure 1: A subset of a contextual graph represent-
ing the content on a movie database website.

and actors (A). Figure 1 shows a part of such a contextual
graph containing these five different node types and the links
between them. Users can be connected to each other via
movies or tags, and movies can share user, actors, genres,
and tags. By following multiple links, a user could even
browse to new movies that share the same actors, tags, or
genres, even though the original movies were not connected
directly.

2.1 Modeling browsing behavior
Our recommendation algorithm, ContextWalk, is based

on modeling the browsing process of a user on a movie
database website. In this browsing process, we assume that
the user starts with a specific movie (or possibly another
entity or contextual feature), and browses the contextual
graph, until he finds an interesting node and stops the brows-
ing process. If that node happens to be a movie, this could
represent a user taking an interest in that movie with regard
to future viewing. ContextWalk was inspired by the work
by Craswell et al. [5], who successfully applied a random
walk model to image search by modeling the query formula-
tion process of users using the bipartite image-query graph.
It was also heavily influenced by the work by Clements et al.
[4], who used a random walk model for tag-based search on
social bookmarking websites. We extend their models here
to include contextual information for movie recommenda-
tion and emulate the user’s browsing process by a random
walk on the contextual graph.
Similar to [5], we make a number of simplifying assump-

tions in our model of user browsing behavior. The user has
a limited memory, which means that he forgets his previous
position on the contextual graph [5]. In contrast to algo-
rithms like, for instance, PageRank [10] and FolkRank [8],
we are not interested in the background probability of all
nodes in the contextual graph by taking a random walk of
infinite length. Instead, we limit our random walks to a fi-
nite length to keep the user in the vicinity of his original

http://www.imdb.com/
http://www.rottentomatoes.com/

movie-related ‘recommendation need’ [5]. Our model is not
based on real browsing behavior on a movie database web-
site, but instead estimates the transition probabilities from
node to node using ratings and the links between different
nodes, e.g., the actors associated with a movie. By using
ratings instead of binary usage patterns, we can bias the
random walk to start from the more likely movies, instead
of assigning each movie the same starting point likelihood.
In our random walk model, we allow for the possibility

of self-transitions where the walk stays in place [5]. Self-
transitions increase the influence of the initial state and
provide another way of keeping the user in the vicinity of
his original recommendation need. A self-transition corre-
sponds to the user staying on the page of the currently se-
lected movie, actor, tag, or genre, instead of moving on.
Another perspective on our model is viewing it as a noise

process, where we start with a desired movie (as evident
from the assigned ratings) and add noise by taking a num-
ber of steps. Given a starting movie, this produces in a
probability distribution over all contextual nodes and corre-
sponds to a Markov random walk [5].

2.2 Constructing the Contextual Graph
We explain our approach by focusing on contextual graph

with five different types of nodes: users, items, tags, genres,
and actors. Let U be the set of users, I be the set of items
(or movies), T be the set of tags, G be the set of genres, and
A be the set of actors7. We construct the contextual graph
G = (V, E) as the union of these five sets V = U∪I∪T ∪G∪A.
Let N be equal to |V|, the number of nodes in G. The edges
E in G correspond to the links between the different nodes,
associating two nodes i and j with each other. For instance,
for movie i and actor j we have an unweighted edge between
i and j if actor j played in movie i. Edges between user and
item nodes are a special case as they can be represented
either by implicit binary usage patterns (seen vs. unseen)
or by ratings. In this paper, we assume that edges between
user and item nodes are weighted by the ratings assigned
to a movie by a user. By extending the graph in this way
to include other contextual features, ContextWalk uses
not only the links between users and items, as is common
on collaborative filtering [12], but also links between tags,
genres, and actor, all in the same model.
A random walk over G is a stochastic process in which the

initial state is known and the next state S is governed by a
probability distribution [4]. We can represent this distribu-
tion for our graph G by constructing the transition proba-
bility matrix X, where the probability of going from node
i (at time t) to node j (at time t + 1) is represented by
Xi,j = P (St+1 = j|St = i).
Figure 2 shows how we create the transition probability

matrix X for our contextual graph. It builds on the pre-
vious work done by [4]. The weights of the edges in our
multipartite network are determined from the values in the
individual sub-matrices. The UI sub-matrix contains rat-
ings on a scale from 1 to 5, and theUT and IT sub-matrices
contain the tag counts per user and per item respectively.
All other sub-matrices are unary: each link between two ob-
ject types is denoted by a 1. For example, each actor j in
a particular movie i is represented in the item-actor matrix
IA as IAi,j = 1. We combine the ten possible sub-matrices
7Our notation borrows heavily from [4] and [5], which in
turn borrowed from [14].

α	 ·∙	 UU β	 ·∙	 UI β	 ·∙	 UT β	 ·∙	 UG β	 ·∙	 UA

U I T G A

UI

A

UT

UG

UA

IG

IT

TG

IA

TA

GA

GG

AA

TT

II

UU

β	 ·∙	 UI

β	 ·∙	 UT

β	 ·∙	 UG

β	 ·∙	 UA

α	 ·∙	 II

β	 ·∙	 IT

β	 ·∙	 IG

β	 ·∙	 IA

β	 ·∙	 IT

α	 ·∙	 TT

β	 ·∙	 TG

β	 ·∙	 TA

β	 ·∙	 IG

β	 ·∙	 TG

α	 ·∙	 GG

β	 ·∙	 GA

β	 ·∙	 IA

β	 ·∙	 TA

β	 ·∙	 GA

α	 ·∙	 AA

U

I

T

G

A

T

T

T

T

T

T

T

T

T T

=	 v

=	 v

n

0

item	 state
probabili5es

	 =	 X

Figure 2: The weights of the edges in our multipar-
tite network are determined from the values in the
individual sub-matrices. The UI sub-matrix con-
tains ratings on a scale from 1 to 5, and the UT and
IT sub-matrices contain the tag counts per user and
per item respectively. All other sub-matrices are
unary as each link between two object types is rep-
resented by a 1. Self-transitions in the contextual
graph occur with probability α and are captured in
the UU, II, TT, GG, and AA submatrices. We row-
normalize X by multiplying the other sub-matrices
by β = 1−α

δ−1 where α is the self-transition probabil-
ity and δ is the number of different contextual node
types (i.e., the number of disjoint sets of nodes).
This figure is adapted from the one in [4].

and their transpositions to produce our transition probabil-
ity matrix X as shown in Figure 2. All sub-matrices are
row-normalized.
We represent the self-transitions that allow the walk to

stay in place by adding the identity matrix to X. They are
captured in UU, II, TT, GG, and AA sub-matrices in
Figure 2. These self-transitions occur with probability α.
To ensure that we can use the values in X as transition
probabilities, we row-normalize the ten submatrices in X
by a factor β = 1−α

δ−1 where δ is the number of different
contextual node types (i.e., the number of disjoint sets of
nodes). This ensures that the row vectors of X sum to 1.
For example, in the U-I-T-A-G case, δ is equal to 5.
Note that, while we have currently constructed a multi-

partite graph with five different types of nodes, we could
also have restricted ourselves to, for instance, users, items,
and actors. The contextual graph for such a scenario and
the accompanying transition probability matrix X would be
constructed in the same manner as described above, but
with smaller dimensions and three sub-matrices instead of
ten. The same principle holds for adding extra contextual
node types to our graph, such as directors or writers.

2.3 Computing the Random Walk
To start our random walk over G we need to define an

initial state vector v0, where we can select which user takes
the walk by setting the element corresponding to that user
to 1 and the other elements to 0. This is visualized at the
bottom of Figure 2. We can then multiply the initial state
vector v0 with the transition probability matrix X to calcu-
late the transition probabilities v1 after taking one step on
the contextual graph. In general, we can calculate multi-step
probabilities either by multiplying the initial state vector v0
with the transitional probability matrix Xt after t steps or,
equivalently and more efficiently, by iteratively multiplying
the state vector for the previous step t by the transitional
probability matrix: vt+1 = vtX. The state vector after any
t steps contains the probability distribution over all nodes.
As shown at the bottom of Figure 2, a part of vt contains
the item state probabilities after t steps on the contextual
graph. After removing the items already rated by the user,
we can then rank-order these probabilities to arrive at the
recommendations for the user.
Note that our ContextWalk model also allows us to

support different recommendation tasks. It is possible, for
example, to support actor recommendation by extracting
the actor state probabilities from vt, thereby recommending
interesting new actors to the user. Another interesting ap-
plication would be to ‘activate’ a set of actors in v0 instead
of a user profile, and to generate movie recommendations
based on these actors instead of a specific user profile. We
could also easily support movie recommendation for a group
of users instead of a single individual by ‘activating’ each of
the group members in the initial state vector v0. By chang-
ing the weights of the individual members, we could even
give certain users more influence on the recommendation
process. Each of these tasks could be performed without
having to alter or retrain the model.

3. CONTEXTUAL EXTENSIONS
In addition to the contextual features we currently include

in our ContextWalk model, there are many different ways
we could extend our model with other contextual informa-

tion. In this section we list a few of the most promising
examples.

Social networks Currently, ContextWalk does not uti-
lize any information about similarity or social network
relations between users. Instead, the only information
represented in the UU sub-matrix is formed by the
self-transitions. However, the UU sub-matrix could
easily be extended to include information about for
instance friendship relations between users in a social
network instead of only self-transitions [7, 11].

Temporal information A common problem of many rec-
ommendation algorithms is that they do not include
temporal information about recommendations. As a
user’s taste in movies might change, it would be es-
sential for a recommender systems to assign a lower
weight to movies that were watched a long time ago
and higher weights to more recent movies, perhaps us-
ing some form of exponential weight decay function.
While we have not included this in the algorithm pre-
sented in this paper, it would be relatively easy to
include such temporal weighting. One solution would
be to apply the weighting directly to the ratings ma-
trix R. Another, more elegant solution would be to
alter the initial state vector v0 of a user. By adding
the user’s items to v0 with values between 0 and 1,
weighted by age, a temporal context feature could eas-
ily be added to our ContextWalk model.

Item similarity Similarity between movies or other types
of items could perhaps also be represented by other
metrics such as textual similarity instead of only self-
transitions in the II sub-matrix.

Tag similarity Similar to item-item similarity, it is possi-
ble to determine the similarity between tags, perhaps
using external resources such as WordNet [6].

Actor contribution Actors in a movie rarely have equal
amounts of screen time. While it is currently unclear
whether such a contextual feature would have a no-
ticeable influence on movie recommendation, we could
incorporate this into our model and test this. Instead
of treating actor participation in a movie as a binary
variable, we could instead weight their edges propor-
tionately to the screen time they received.

4. RELATED WORK
The past decade has seen several scattered approaches to

integrating context into the recommendation process, each
one focused on a single contextual factor, such as social net-
works [7, 11], the company the user is in [1], tags [13], and
reviews [15]. None of these approaches have used the same
context-aware algorithm, however, making it difficult to de-
termine what the best solution is.
Random walk models have been applied to recommenda-

tion several times before. Aggarwal et al. [2] were the first to
apply a graph-theoretic approach to recommendation with
their horting algorithm. Horting, as a type of random walk
model, proved well-suited to dealing with the problem of
sparsity. It can be extended with item metadata similarity
to generated recommendations in the absence of user rat-
ings. Hotho et al. [8] applied a random walk model to rec-

ommendation for social bookmarking. They construct a tri-
partite graph of users, items, and tags in a manner similar to
ours, but without the self-transitions. Like PageRank [10],
the FolkRank algorithm is based on a random walk model
that calculates the fully converged state transition proba-
bilities by taking a random walk of infinite length. Con-
textWalk was inspired partly by the work by Craswell et
al. [5], who successfully applied a random walk model for
image search, by modeling the query formulation process of
users using the bipartite image-query graph. It was also in-
fluenced by the work by Clements et al. [4], who propose a
random walk model for tag-based item search. The differ-
ence between their approach and FolkRank is the inclusion
of self-transition probabilities and using random walks of
fixed length. Yildirim et al. [16] also present a recommenda-
tion algorithm that uses finite length random walks to pro-
duce item recommendations. They explicitly calculate item
similarities using the cosine distance and use these similar-
ities to infer the transition probabilities. Their model does
not include any additional context beyond the user-item rat-
ings. Yildirim et al. confirm the findings of [2] by showing
that their random walk algorithm dealt well with sparsity.
Wijaya et al. [15] also apply a random walk model to movie
recommendation, but instead of constructing a graph based
on usage patterns, they construct a sentiment graph of pos-
itive and negative terms in movie reviews. They calculate
PageRank on the sentiment graph to rank the reviews and
find that the ranking it computes is comparable to the rank-
ing obtained from the box office figures. Finally, Baluja et
al. [3] present a recommender system for YouTube videos
based on random walks on the bipartite user-video graph.
They evaluate their method on a three-month snapshot of
live data from YouTube, and show that it outperforms using
video co-views to recommend new videos.

5. CONCLUSIONS
In this paper we have presented ContextWalk, a movie

recommendation algorithm based on taking random walks
on the contextual graph. In addition to using the links be-
tween users and items as is common in collaborative filter-
ing, it also allows for easy inclusion of different types of
contextual features, such as actors, genres, directors, writes,
color, language, and so on. It also supports many other
recommendation tasks with the same random walk model
without the need for alteration or retraining, such as rec-
ommending interesting actors, recommending movies for a
group of users, or tag recommendation.

5.1 Future Work
We are currently engaged in experiments with our Con-

textWalk model. Among other things, we wish to inves-
tigate the optimal combination of contextual features, i.e.,
whether a contextual graph with user, items, tags, genres,
and actors outperforms the graphs based on subsets on these
five context types. We would also like to examine the ben-
efits of extending our model as described in Section 3.

Acknowledgments
This research was supported by the Radio Culture and Au-
ditory Resources Infrastructure Project (LARM) as funded
by the Danish National Research Infrastructures Program
(project no. 09-067292).

6. REFERENCES

[1] G. Adomavicius, R. Sankaranarayanan, S. Sen, and
A. Tuzhilin. Incorporating Contextual Information in
Recommender Systems using a Multidimensional Ap-
proach. ACM Transactions on Information Systems,
23(1):103–145, 2005.

[2] C. C. Aggarwal, J. L. Wolf, K.-L. Wu, and P. S. Yu.
Horting Hatches an Egg: A New Graph-Theoretic Ap-
proach to Collaborative Filtering. In Proceeding of
KDD ’99, pp. 201–212, 1999. ACM.

[3] S. Baluja, R. Seth, D. Sivakumar, Y. Jing, J. Yag-
nik, S. Kumar, D. Ravichandran, and M. Aly. Video
Suggestion and Discovery for YouTube: Taking Ran-
dom Walks through the View Graph. In Proceedings of
WWW ’08, pp. 895–904, 2008. ACM.

[4] M. Clements, A. P. de Vries, and M. J. Reinders.
Optimizing Single Term Queries using a Personalized
Markov Random Walk over the Social Graph. In Pro-
ceedings of ESAIR ’08, 2008.

[5] N. Craswell and M. Szummer. Random Walks on the
Click Graph. In Proceedings of SIGIR ’07, pp. 239–246,
2007. ACM.

[6] C. Fellbaum. WordNet: An Electronic Lexical Database.
MIT Press, Cambridge, MA, 1998.

[7] G. Groh and C. Ehmig. Recommendations in Taste-
related Domains: Collaborative Filtering vs. Social Fil-
tering. In Proceedings of GROUP ’07, pp. 127–136,
2007. ACM.

[8] A. Hotho, R. Jäschke, C. Schmitz, and G. Stumme. In-
formation Retrieval in Folksonomies: Search and Rank-
ing. In Proceedings of the ESWC ’06, 2006.

[9] M. Montaner, B. López, and J. L. de la Rosa. A Taxon-
omy of Recommender Agents on the Internet. Artificial
Intelligence Review, 19(4):285–330, 2003.

[10] L. Page, S. Brin, R. Motwani, and T. Winograd. The
PageRank Citation Ranking: Bringing Order to the
Web. Technical report, Stanford Digital Library Tech-
nologies Project, 1998.

[11] A. Said, E. W. De Luca, and S. Albayrak. How Social
Relationships Affect User Similarities. In Proceedings
of the 2010 Workshop on Social Recommender Systems,
pp. 1–4, 2010.

[12] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-
Based Collaborative Filtering Recommendation Algo-
rithms. In Proceedings of WWW ’01, pp. 285–295, 2001.

[13] P. Symeonidis, A. Nanopoulos, and Y. Manolopoulos.
Tag Recommendations Based on Tensor Dimensional-
ity Reduction. In Proceedings of RecSys ’08, pp. 43–50,
2008. ACM.

[14] M. Szummer and T. Jaakkola. Partially Labeled Clas-
sification with Markov Random Walks. Advances in
NIPS, 2:945–952, 2002.

[15] D. T. Wijaya and S. Bressan. A Random Walk on
the Red Carpet: Rating Movies with User Reviews and
PageRank. In Proceedings of CIKM ’08, pp. 951–960,
2008. ACM.

[16] H. Yildirim and M. S. Krishnamoorthy. A Random
Walk Method for Alleviating the Sparsity Problem in
Collaborative Filtering. In Proceedings of RecSys ’08,
pp. 131–138, 2008. ACM.

	1 Introduction
	2 Contextual Random Walks
	2.1 Modeling browsing behavior
	2.2 Constructing the Contextual Graph
	2.3 Computing the Random Walk

	3 Contextual Extensions
	4 Related Work
	5 Conclusions
	5.1 Future Work

	6 References

