
Context-aware recommendations on rails

Introducing a context-aware recommender construction kit

Tim Hussein, Timm Linder, Werner Gaulke, Jürgen Ziegler
Interactive Systems and Interaction Design, University of Duisburg-Essen

Lotharstr. 65, 47057 Duisburg, Germany
{tim.hussein, timm.linder, werner.gaulke, juergen.ziegler}@uni-due.de

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Informa-
tion Search and Retrieval—Information filtering, Selection
process, Search process

General Terms
Design, Management, Human Factors

Keywords
Recommender Systems, Personalization, Context-awareness,
Hybrid recommender systems, Semantic recommender sys-
tems, Ontologies

ABSTRACT
In this paper, we introduce a framework for modular gener-
ation of context-aware recommendations. The components
of this framework include context sensors, recommender al-
gorithms and utility modules (converters and filters), all re-
alized as so-called services, which can flexibly be combined
in terms of a recommender construction kit. Different areas
of an application (e. g. a web portal) thus can be powered by
a distinct recommendation-providing service chain. In this
way, different recommender techniques can be used in paral-
lel, either separately or combined, with or without incorpo-
rating contextual information, which makes it a framework
for context-aware, hybrid recommendation generation.

1. INTRODUCTION
With the help of recommendations, large collections of

products or services are made accessible. Recommender sys-
tems support users by recommending content considered as
being particularly interesting for them. Recommender sys-
tems play an important role in handling large amounts of in-
formation. Often, the content and artifacts a person might
be interested in, depend on the specific situation: The cur-
rent location, season, user role, temperature, etc. Context-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CARS-2009, October 25, 2009, New York, NY, USA.
Copyright is held by the author/owner(s).
.

aware recommender systems try to exploit the usage context
in order to improve the recommendation generation process.

Unfortunately, to this day, no commonly accepted techni-
cal definition of context does exist. Just for the term “con-
text”, there are more than 150 definitions from various dis-
ciplines. One of the most frequently cited definitions was
proposed by Abowd, Dey and others [1]:

“Context is any information that can be used to
characterize the situation of an entity. An entity
is a person, place, or object that is considered
relevant to the interaction between a user and an
application, including the user and applications
themselves.”

This rather broad definition lets the designer decide what
he or she considers as relevant contextual information. In
this paper, we introduce a technique that incorporates both
context information derived from system interaction (click-
stream, history) as well as information about the external
circumstances (location, time, season, etc.).

First, an overview of existing approaches and their short-
comings is given. Based on this overview, we introduce Dis-
covr, our approach of a context-aware recommender frame-
work. Along with a conceptual overview of the Discovr ar-
chitecture, we will outline some of its capabilities. After the
technical overview, we present a validation by an example.

2. CONTEXT-AWARE AND HYBRID REC-
OMMENDER SYSTEMS

Combining different techniques has been one of the main
research interests within the field of recommender systems
as well as incorporating contextual information [3, 4]. Con-
text can be used in several ways to enhance recommender
systems. Shepitsen et al. for instance introduce an agglomer-
ative hierarchical clustering algorithm for social tagging sys-
tems [11]: A user-selected tag is used for a context-dependent
limitation of the selected set of clusters considered for the
recommendation process.

A content-based model for adaptive recommendations with
the help of a use context is described by Kim and Kwon [9]
using a set of four ontologies from which the “use context”
for a user is derived: Product, location, shopping record and
consumer. Most valued products are taken from the product
ontology with help of the consumer preferences and shop-
ping record. The most valued recommendations are taken
and displayed in more detail. Products are ordered in a
concept hierarchy from broad to most specific. If the user



chooses a concept, the context switches and more specific
information is shown. In this way, context is used to control
the information detail of recommendations.

Adomavicius et al. add contextual information as addi-
tional dimensions to the given user and item dimension in an
collaborative filtering approach [2]. The recommendations
are derived from the item ratings under the given context.

Contextual information for both the involved items and
recommendation process itself is proposed by Loizou et al.
[10], who use an ontology containing information about items
and the recommendation process. The ontology is build with
the help of web services and expanded over time with new
data to match the current recommendation context at run-
time. Suchlike information could for instance contain met-
rics for usefulness for specific users. To extract recommen-
dations, this ontology is mapped into a vector space from
which only relevant parts are sliced out.

All theses systems work well in their specific environ-
ments, but we think there is still a research gap regard-
ing systematic, generic and extensible integration of context
information into the recommendation process. In this pa-
per, we introduce a framework that addresses these ques-
tions and, beyond that, can be very useful for hybrid recom-
mender system prototyping as different recommender tech-
niques and context sources can smoothly be combined.

3. THE DISCOVR FRAMEWORK
Like many other context-aware approaches (including some

of the systems presented in Section 2), Discovr utilizes se-
mantic background information represented as ontologies.
All item- and context-related information to be incorporated
by the system has to be modeled in an ontology1, for in-
stance [CD Garth Brooks - Beyond the Season] → [suitable
for holiday] → [Christmas]. Surely, this is a laborious task,
but Discovr is mainly a framework for prototypical devel-
opment and the scenarios will more likely be several hundred
items and concepts rather than millions.

The components introduced in the upcoming section ex-
ploit this information and build context-aware recommen-
dations upon.

3.1 A service architecture for recommendations
We identified three major areas of concern for context-

aware recommendations: Sensing the user’s context, gener-
ating recommendations thereupon and finally presenting the
recommendations to the user in an appropriate fashion.

One important idea that was present throughout all our
concepts was to realize the different components in the form
of separate services. Each service has some kind of input
and some kind of output, so that they can be connected
to each other. Our first thought was then to arrange the
services in a pipeline structure, where all services work on a
shared semantic model that is passed through the pipeline
and modified in turn by each service.

Unfortunately, this concept proved to be too inflexible, so
we deviated from the pipeline idea by arranging the services
in a service process. Instead of linearly connecting the ser-
vices, they were now set up in a directed dependency graph
built by a dedicated component, the service processor. The
major advantage of this approach is that the output of one

1It may be useful to split the information into several on-
tologies for later reuse of parts in other scenarios

service can be exploited by an arbitrary number of services
at any later point in time during this process.

Another important problem was the design of the service
interfaces. Whereas in our first concept, all the inter-service
communication was done using a shared semantic model, we
faced one major problem with this solution: A service that
is built upon the output of a preceding service would have to
know too much about the internals of that service in order
to interprete its result. Since semantic models can basically
contain statements of any kind, their form would have to
be restricted in a way that the interpreting service could
work with them. That, however, negates the point in using
semantic models at all.

In our current approach, we chose a way in between. While
each service can present its data as a semantic model, for
instance for visualization and explanation purposes, most of
the communication between services takes place “on rails” in
the way that the output type of one service matches the in-
put type of another. We divided the input types (which we
call triggers because they trigger the receiving component)
and the output types into five distinct categories (Figure 1):

• Semantic models,

• Sorted lists of resources from our domain model, with
the sorting order based upon the importance of the
given resource,

• Lists of weighted resources with assigned weights be-
tween 0 (unimportant) and 1 (very important),

• Numeric values,

• Textual data.

Filter / 

Converter

Sensor

WR 123 “xy”MOD SR

M
O

D

WR 123 “xy”MOD SR

Recommendation 

Service

WR 123 “xy”MOD SR

M
O

D

WR 123 “xy”MOD SR

Trigger Type

(at most one)

Output Type(s)

(one or more)

Semantic

Model

Sorted list of

resources

Weighted

resources

Numbers

Textual

data

}

}

Semantic model 

representing the 

background data 

source(s)

Figure 1: Types of components of our service ar-
chitecture, together with possible input and output
data types.

Each service accepts triggering input of one specific type
at most, which may be provided by one or more trigger-
ing services. The output of a service, on the other hand,
can be manifold, depending on the particular implementa-
tion.2 Additionally, each service can possess one or more

2Item-based recommendations for instance could be deliv-
ered both as ordered or weighted resources.



background data source(s) in the form of semantic models
(RDF triples) if needed.

In Discovr, we distinguish three different categories of
services (Figure 1): Sensor, recommendation and utility ser-
vices, all of them now explained in more detail.

3.1.1 Sensor Services
A sensor is a service that acquires information about the

user’s context: Information derived from system interaction
or information about external circumstances like the cur-
rent temperature, which might be determined by contacting
a web service. For a sensor to operate, it might first be nec-
essary to retrieve already known information from another
sensor: A weather sensor might need to know the user’s
current location, for example.

Most sensors’ output has the form of a list of weighted re-
sources (for instance closest cities along with their degree of
adjacency). Some sensors, on the other hand, simply return
literal values like strings or numbers (IP address, geographic
coordinates).

3.1.2 Recommendation Services
Recommendation services use their input in order to gen-

erate recommendations (context-aware ones, if the output of
sensors is being incorporated). Typically, recommendation
services require a background data source containing items
to recommended and their relations to each other in order
to work properly.

The output of recommendation services is usually twofold:
First, a recommendation service produces a list of ordered or
weighted resources that can (after a possible filtering step)
be presented to the user. Second, a recommendation ser-
vice also returns a semantic model that is a sub-model of
the background data source input and can be utilized as
the background data source of yet another recommendation
service, such that these services can be chained.

3.1.3 Utility Services
The last kind of services are utility services. Such a ser-

vice might filter its input according to specific criteria, like
selecting only resources that have a specific type, or limit the
amount of results. Another example of a utility service is a
weighting service that assigns weights to a given, sorted list
of resources according to a specific formula (virtually acting
as a converter between sorted and weighted resources).

3.2 Recommendations on rails
We call this approach recommendations on rails, because

it follows the two major principles of frameworks like Ruby
on Rails, Grails, etc.: Don’t repeat yourself (DRY) and
Convention over Configuration (CoC). All components make
use of encapsulation to a great extent, so that they only have
to implement their very core functionality and cover the rest
by the use of filters and additional services (DRY). The pos-
sibility of reusing the result of a service several times within
a single complex recommendation process follows the DRY
principle as well.

Furthermore, due to the clear distinction between different
types of in- and output interfaces, the services can flexibly be
combined without the hassle of custom connectors. A com-
ponent implementing the Sorted resources provider interface
can always be used as an input for a Sorted resource triggered
service following the CoC principle (like using rails).

4. EXPERIENCES
We developed a virtual shopping and leisure portal includ-

ing about 500 items like DVDs, CDs, sport events, concerts,
etc. to demonstrate DISCOVR’s potential (Figure 2) and
implemented a set of components as reusable building blocks
for hybrid, context-aware recommender systems.

Figure 2: Screenshot of a web-portal powered by
DISCOVR including different areas for recommen-
dations. In this case: (1) is a ’traditional’ rec-
ommendation block for product recommendations
based on a Spreading Activation algorithm and the
latest user clicks. (2) shows local events suitable to
current weather conditions. In (3) recommendations
for a chosen category (e. g. CDs) are presented with
certain items (with special relevance to upcoming
holidays) presented as highlights (4).

4.1 Portal architecture
We implemented Discovr on top of the Spring Frame-

work3 as a Java web application including interfaces and
abstract classes reflecting the components introduced in Sec-
tion 3. In addition, we realized several concrete sensor, rec-
ommender and filter modules for testing purposes: 8 Sen-
sors for location, click-stream, weather, season, etc.; 3 rec-
ommenders (Item-based Collaborative Filtering, Spreading
Activation and Rule-based) as well as 5 filters like a Sorted
Resource Weighter or a Weighted Resource Filter.

We assume that the general principles of item-based CF
and rule-based recommendations are commonly known among
the readership. Spreading Activation is a concept proposed
in the 1970s by Collins and Loftus [5] and was originally ap-
plied in the fields of psycholinguistics and semantic priming.
Later, computer scientists adopted the idea: The principles
have successfully been used in several research areas in com-
puter science, most notably in information retrieval [6] or for
predicting user behaviour [7]. The basic idea is that within
a semantic network, certain elements are initially activated
and spread this activation to adjacent elements. This ac-
tivation flow runs through the network until a certain stop
condition is met. In our case, the semantic model supplied

3http://www.springsource.org



by the background data source is converted into a directed
graph, and those elements reflecting the input values are
initially activated and spread this energy in a highly cus-
tomizable fashion within the network. The service’s out-
put is then a list of resources together with their activation
weights corresponding to the activation values obtained dur-
ing the activation process. Details about our Spreading Ac-
tivation Implementation can be found in one of our previous
publications [8].

The portal makes strong use of the MVC design pat-
tern, so that the information contained in the model can be
displayed in various ways with the components only being
loosely coupled.

Recommendations are generated using Discovr’s service
framework. A service processor builds a dependency graph
of all registered services and then executes them in order.
These services are realized as Java beans that are set up
using an XML configuration file. Possible configuration pa-
rameters of a given service include the services that trigger
this service, the background data source (which is, in most
cases, the domain model), or service-specific items like cer-
tain filter criteria for a filtering service. A virtual service
editor is planned as a future extension to make the whole
setup of the service chain configurable at run-time.

After the services have been processed by the service pro-
cessor, the output of any service at any part of the service
process can then be presented to the user, for example in the
form of (context-adaptive) recommendations. To achieve
this, a so-called view preparer4 converts the service’s out-
put, for instance a list of weighted resources, into a human-
readable form by adding images, labels, descriptions and so
on. The resulting model is then integrated into a JSP tem-
plate for display to the user, as shown in Figure 3.

Services JSP 
Template

View 
Preparer

Figure 3: View Preparers preprocess the service
output for a desired information block within the
portal (hyperlinks, images, etc.).

4.2 Context-aware recommendations
Now we want to give two examples of service processes

that produce context-aware recommendations. The first one
(Figure 4) creates recommendations for events, that are a)
taking place in (or close to) the user’s city, b) are suitable
for the current weather conditions and c) reflect the user’s
general preferences, like his music taste or his favorite sports
club, which we deduce from the user’s click-stream.

As can be seen in the schematic, the examined service
process has actually two starting points demonstrating that
these processes do not have to be linear. In the left branch,
the IP Sensor retrieves the user’s current IP address and
returns it as a character string. The Geographic Coordi-
nate Sensor uses this IP address to determine the user’s
present location (via a publicly accessible web service). The
resulting geographic coordinates then trigger the City Sen-
sor, which now finds the closest cities by comparing the co-

4We use Apache tiles to define certain independent blocks
inside one page, each one powered by a view preparer.

Weighted Resources

IP Sensor

“xy”

Geographic 

Coordinate Sensor

“xy”

City Sensor

M
O

D

WR

Weather Sensor

WR

WR

Weather Rule 

Applying Service

WR

M
O

D

MOD

Local Event Rule 

Applying Service

WR

M
O

D
MOD

Click-based

Spreading Activation

WR

M
O

D

WR

Sorted Resource 

Weighter

Sorted Resource

Filter

Click History Sensor

SR

SR

Click Sensor

SR

Weighted 

Resource

Filter

123

123

Figure 4: Example of the interaction of several ser-
vices. The result of the Weather Sensor (e. g. sunny)
is used as a trigger for a rule-based selection service
that restricts the domain ontology model to those
events that appear interesting under the given cir-
cumstances (e. g. outdoor events). Then, another
rule uses the City Sensor’s result to further restrict
the ontology so that only events in the user’s city
are included. Finally, a Spreading Activation Rec-
ommender highlights those events that are related
to the products and events that the user has already
clicked on. The end result can be limited in its size
and filtered to include only events of a specific type
(e. g. concerts).

ordinates to those stored in the domain model5. The result
is a list of weighted resources (’Duisburg → 1.0’,’Cologne
→ 0.2’, which means that Events in Duisburg are highly
recommendable and events in Cologne at least a bit).

Now that we have established the cities closest to the
user, this result is fed into two other services: The Weather
Sensor uses the closest city and determines the weather at
this location (using another web service). The result, e. g.
’sunny weather → 0.8 ’, then triggers a rule-based selection
service that filters the domain model using a given set of
rules such that the remaining sub-model only contains indi-
viduals that are associated with sunny weather. Second, the

5The domain model is a ontological representation of the
application domain as described in Section 3.



results of the City Sensor also serve as a trigger for another
rule-based selection that takes the model from the preced-
ing selection as a background data source and specifically
selects events from the sub-model that are located in the
user’s current city.

Subsequently, the right branch (Figure 4) is being pro-
cessed: The products and events the user has clicked on
are obtained using the Click Sensor and recorded (for the
remainder of the session) using the Click History service.
After filtering these clicked items by limiting the item count
and assigning weights to them depending on the time that
has passed since the click6, they trigger a Spreading Activa-
tion-based recommendation process. This process takes the
semantic model from the left branch as a background data
source, i. e. it works on the model containing the local events
that fit to the current weather.

Finally, the resulting list of weighted resources can be re-
stricted to e. g. the ten most important items. The final
weighted resources list is now formatted and displayed to
the user as described in section 4.1.

With the recommendation process illustrated in the sec-
ond example (Figure 5), we can recommend products to
the user that are associated with upcoming holidays (e. g.
Christmas) and fit to the item the user is currently looking
at. For example, when the user’s last click was on a roman-
tic movie, we would recommend (romantic) movies that are,
in some way, related to Christmas.

To achieve this, the output of a Holiday Sensor triggers a
rule applying service restricting the domain model to only
those elements related to just this holiday. This sub-model
then serves as the background data source for an item-based
collaborative filtering triggered by the user’s last visited
item. For the sake of brevity, the additional background
data required for the item-based collaborative filtering ap-
proach (clicked items of other users) is not modeled here.

Holiday Sensor

WR

Item-based 

Collaborative Filtering

WR

M
O

D

WR

Holiday Rule

Applying Service

WR

M
O

D

Click Sensor

SR

Sorted Resource 

Weighter

MOD

Figure 5: Another example of a service process. In
this case, a combination of a rule-applying selection
service and an item-based collaborative filtering ap-
proach has been chosen.

5. CONCLUSIONS
With Discovr, we introduced a framework for system-

atic, generic and extensible integration of context informa-

6We assume that current clicks are more important than
older ones.

tion into the recommendation process. Discovr facilitates
the process of rapidly prototyping hybrid recommender sys-
tems as it provides an extensible architecture for smooth
integration of various recommender techniques and context
information.

6. ACKNOWLEDGEMENTS
The research presented in this paper is part of the CON-

TICI project, in which the Universities of Duisburg-Essen,
Siegen, Hagen, and Aachen take part. CONTICI is funded
by the German Research Foundation (Deutsche Forschungs-
gemeinschaft).

7. REFERENCES
[1] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies,

M. Smith, and P. Steggles. Towards a better
understanding of context and context-awareness. In
HUC ’99: Proceedings of the 1st international
symposium on Handheld and Ubiquitous Computing,
pages 304–307, London, UK, 1999. Springer.

[2] G. Adomavicius, R. Sankaranarayanan, S. Sen, and
A. Tuzhilin. Incorporating contextual information in
recommender systems using a multidimensional
approach. ACM Transactions on Information Systems,
23(1):103–145, 2005.

[3] G. Adomavicius and A. Tuzhilin. Toward the next
generation of recommender systems: A survey of the
state-of-the-art and possible extensions. IEEE
Transactions on Knowledge and Data Engineering,
17(6):734–749, 2005.

[4] R. Burke. Hybrid recommender systems: Survey and
experiments. User Modeling and User-Adapted
Interaction, 12(4):331–370, 2002.

[5] A. M. Collins and E. F. Loftus. A spreading activation
theory of semantic processing. Psychological Review,
82(6):407–428, 1975.

[6] F. Crestani. Application of spreading activation
techniques in information retrieval. Artificial
Intelligence Review, 11(6):453–482, 1997.

[7] W.-T. Fu and P. Pirolli. Snif-act: A cognitive model of
user navigation on the world wide web.
Human-Computer Interaction, 22(4):355–412, 2007.

[8] T. Hussein and J. Ziegler. Adapting web sites by
spreading activation in ontologies. In L. Bergman,
J. Kim, B. Mobasher, S. Rueger, S. Siersdorfer,
S. Sizov, and M. Stolze, editors, Proceedings of the
International Workshop on Recommendation and
Collaboration (ReColl), 2008.

[9] S. Kim and J. Kwon. Effective context-aware
recommendation on the semantic web. International
Journal of Computer Science and Network Security,
7(8):154–159, 2007.

[10] A. Loizou and S. Dasmahapatra. Recommender
systems for the semantic web. In ECAI 2006
Recommender Systems Workshop, 2006.

[11] A. Shepitsen, J. Gemmell, B. Mobasher, and
R. Burke. Personalized recommendation in social
tagging systems using hierarchical clustering. In
Proceedings of the 2008 ACM conference on
Recommender Systems (RecSys), pages 259–266, New
York, NY, USA, 2008. ACM.


