
1

Relational Database and SQL
Prepared by Salvatore T. March, Jungpil Hahn and Jinsoo Park

For Classroom Use Only

Introduction
The database layer of an information system provides its requisite persistence
mechanism. That is, an information system utilizes a database management system
(DBMS) to maintain its data, stored permanently in secondary memory (disk). Relational
database technology is the dominant type of DBMS in commercial information system
applications.

A Relational DBMS (RRDBMS) defines its data as a collection of tables each having
well-defined rows and columns. Each table holds data about a singe type of "thing" about
which data is maintained. The rows represent the "things" (e.g., customers, products,
orders, employees, accounts, and transactions). The columns represent the "facts" about
those things that need to be maintained (e.g., name, address and phone number for
customers; product number, description and price for products). Each column in each
row can hold only one value. Hence column in each row in a table holds the data value
for the fact represented in that column about the "thing" represented in that row.

Suppose, for example, it was necessary to store data about the departments of a company
and the employees who work for them. Since departments are different types of things
from employees, one table would be defined for departments and a separate table would
be defined for employees. The department table would have one row for each
department and one column for each fact about departments the needed to be maintained
about departments. Depending on the information system requirements, the department
table would have columns such as, department number, department name, department
budget, and department manager. Similarly, the employee table would have one row for
each employee and one column for each fact about employees that needed to be
maintained. The employee table would have columns such as employee number,
employee name, social security number, number of exemptions, weekly salary, year-to-
date gross pay, and department for which the employee works.

Figure 1 shows a pictorial representation of this database, including sample data. These
tables must be defined within the RDBMS, data must be entered into them and, of course,
data must be accessed from them to meet the requirements of the information system. To
do so, the RDBMS must have a language to define the tables and one to update and
access their data. The dominant language implemented in commercial RDBMSs is the
Structured Query Language (SQL). SQL provides both data definition and data
manipulation capabilities. This module provides an introduction to relational database
concepts and to SQL.

2

Department Table
deptNo deptName deptBudget deptManager

1 Marketing 220,000 4
2 Operations 400,000 6
3 Accounting 100,000 3

Employee Table
empNo empName ssn exemptions weeklySalary ytdGross deptNo

1 Smith, Joseph 111-11-1111 1 4000 40000 3
2 Jones, David 222-22-2222 2 3200 32000 2
3 Olson, Jane 333-33-3333 1 3800 38000 3
4 Neff, Arnold 444-44-4444 3 2300 23000 1
5 Homes, Denise 555-55-5555 2 1400 14000 1
6 Naumi, Susan 666-66-6666 2 3500 35000 2
7 Young, John 777-77-7777 1 3000 21000 3

Figure 1 - An Example Relational Database

In addition to implementing SQL, many commercial RDBMSs include a graphical, or
direct manipulation interface through which data definition and data manipulation
commands can be entered. The DBMS translates them into SQL. RDBMSs may also
include graphical screen and report "painters" which enable visual programming of these
interfaces. These also generate SQL retrieval queries to obtain data for display, and, in
the case of input screens generate SQL update queries and commands to write data back
to the database. These SQL queries are typically embedded in generated procedural code
in the host language supported by the DBMS. The host language may be a general
purpose programming language such as COBOL, C, C++, or Java or it may be a
proprietary language as in Microsoft Access (which supports a variation of Visual Basic)
or PowerBuilder.

Client-side development environments such as VisualBasic and PowerBuilder similarly
use SQL or a graphical interface that produces SQL to obtain data for display, and, in the
case of update screens, generate SQL update queries and commands to write data back to
the database. For example, the RecordSource property of a VisualBasic data control
specifies an SQL query. Furthermore, SQL queries are often embedded in modules or
functions implemented in such environments to obtain data for procedural processing and
to execute updates to the database. For example, the VisualBasic methods
CreateDynaset and ExecuteSQL can use SQL queries to specify database retrievals and
updates, respectively.

Background
The Relational Data Model (RDM) was posed by Edward Codd, a researcher at IBM's
San Jose Research center, in a seminal article published in the Communications of the
ACM in 1970 [Codd, 1970]. The RDM was presented as a conceptually simple, but
mathematically sound, representation of the way in which data are stored within a

3

computer database. It was refined and extended by numerous researchers during the
following thirty years and continues to be the subject of ongoing research.

The RDM is the basis for Relational Database Management Systems (RDBMSs) which
have become extremely popular in commercial information systems. The de-facto
standard language used in commercial RDBMSs is the Structured Query Language
(SQL). Originally called SEQUEL (Structured English QUEry Language), and still
pronounced that way, SQL was designed and implemented by IBM in the mid 1970s as
the interface for an research-oriented relational database system called SYSTEM R.

SQL has two components: (1) a Data Definition Language (DDL) in which the structure
of a database is defined and (2) a Data Manipulation Language (DML) in which retrieval
and update queries are specified. The SQL DML is non-procedural in the sense that it
specifies the content of the output (i.e., what), not the procedure for producing it (i.e.,
how). RDBMSs typically have a query optimizer, that determines an efficient algorithm
for producing the result, depending on the database structure, volume, and existing
indexes. One of the important differentiating factors among commercial RDBMSs is the
quality of the query optimizer.

Relational Database Structure (DDL)
As discussed above, a relational database is defined as a set of tables (relations), each
having rows (tuples, records) and columns (attributes, data items). One table is typically
defined for each class or type of entity in the domain of the information system. Rows
correspond to the objects or instances in that class. Columns define the data elements in
the table. These correspond to descriptors or attributes of the objects in that class. Each
row contains one data value for each column. That is, columns contain single-valued
attributes. Each column in a table may be specified to draw values from a domain
defined within the database or to be a predefined data type such as integer or string. A
column may also be specified to be not null, disallowing rows with a null value in that
column. If a column is not specified to be, not null, then null values are allowed (i.e.,
empty cells are allowed).

The database illustrated in Figure 1 has two tables, Department and Employee. The
Department table has columns for Department Number (deptNo), Name (deptName)
Budget (deptBudget), and the Employee Number of the employee who manages the
department (deptManager). Similarly, the Employee table has columns for Employee
Number (empNo), Name (empName), Social Security Number (ssn), Number of
Exemptions (exemptions), Weekly Salary (weeklySalary), Year To Date Gross pay
(ytdGross) and the Department Number of the department for which the employee
works (deptNo). Each department has a corresponding row in the Department table with
one value in each column containing the value of that attribute for that department.
Similarly, each employee has a corresponding row in the Employee table.

A table may have column or set of columns designated as its primary key. Each row
must have a unique value for its primary key (or a unique combination of values if there

4

are multiple columns in the primary key – a composite key). deptNo is the primary key
of the Department table; empNo is the primary key of the Employee table. Primary keys
represent the identifier of the type of thing (class, entity) represented in the table.
Primary keys are typically underlined in the textual representation of a table, as done in
Figure 1. Primary key columns must be specified as, not null. Relational database
theory has introduced the concept of normalization or normal forms to define "well-
formed" tables. These are rules aimed at eliminating redundancy within the database
structure1.

Different types of things represented in a database are often related to each other and it is
often important to capture those relationships in the database. Employees and
departments, for example relate to each other in two different ways. Each employee
works for a department and each department has an employee who manages it. The first
relationship is termed a one-to-many with Department on the one side and Employee on
the many side. That is, one department may have many employees who work for it but
each employee works for only one department. The second relationship is termed a one-
to-one relationship. That is, each department may have one employee who manages it
and an employee can manage one department.

Relationships must actually be more precisely defined if the DBMS is to enforce
appropriate data integrity. Is it possible, for example, for an employee not to work for
any department? Is it possible for a department to not have a manager? That is, the
minimum and maximum cardinalities must be specified for each table in the relationship.
For the first relationship assume that, in this business, each employee must work for
exactly one department (a minimum and maximum of one) and a department may have
any number of employees, but is not required to have any (minimum of zero and an
unlimited maximum). For the second relationship assumes that a department has at most
one manager, but does not need to have a manager specified (minimum of zero and
maximum of one) and an employee may manage zero or one department (minimum of
zero and maximum of one). The ER (Entity-Relationship) schema of the relational
database is presented in Figure 2.

Employee Department

works_for

deptNo
deptName

deptBudget

empNo

empName

ssn
exemptions

w eeklySalary

ydtGross

manages

n 1

0..10..1

Figure 2 - ER Schema of the Relational Database in Figure 1

Relationships such as these are represented in a relational database using corresponding
column(s) in each related table. The column(s) in one table must be the primary key of

1 Refer to Kent (1983) for more details on database normalization.

5

that table; the column(s) in the related table is (are) termed a foreign key. Although
primary keys, and thus, foreign keys may include more than one column, to avoid
repeatedly writing, "column or columns," the following discussion assumes that primary
keys, and thus foreign keys, are each a single column.

In a relational database, a one-to-many relationship is represented using a foreign key
column in the table on the many side. The values in that column must come from the
primary key column of the table on the one side. A one-to-one relationship may be
represented in either table, using a foreign key column in one table holding values from
the primary key column of the table on the other side. If the minimum for the table on
the one side is one, then the foreign key column must be designated as "NOT NULL".
The two relationships between departments and employees described above, for example,
are represented in the tables of Figure 1 as follows:

(1) Employee works for Department2 – deptNo is a foreign key column in the
Employee table, corresponding to the primary key column, deptNo, in the
Department table, designated to be NOT NULL, and

(2) Employee manages Department3 – deptManager is a foreign key in Department
table corresponding to the primary key column, empNo in the Employee table, not
designated to be NOT NULL.

As shown in Figure 1, David Jones, employee number 2, works for the Operations
department, department number 2. The employee, Susan Naumi, having employee
number 6, manages this department.

The "Employee manages Department" relationship is represented by a foreign key in the
Department table both for efficiency reasons and for conceptual reasons. Even though
the one-to-one relationship can be represented in either table, it is generally represented
by putting the primary key of a table into a table that has total participation in the
relationship. Relatively few employees manage departments, but most, if not all,
departments have managers. Thus if this relationship was represented in the Employee
table by a foreign key, all rows corresponding to employees who do not manage
departments would have a null value for that column. Furthermore, it is conceptually
more natural to associate the managing function with departments than with employees.

If the minimum on the one side of a relationship is one, i.e., the foreign key is NOT NULL,
then the relationship is said to represent a referential integrity constraint or an existence
dependency constraint. That is, a row cannot exist in the table on the many side unless
there is a related row in the table on the one side. In the above specification, an employee
(row) cannot exist in the database without a related department (row).

If a relationship represents a referential integrity constraint, then the DBMS must not
allow row insertions, deletions and updates that would violate that constraint. For

2 More precisely, you can read the ER schema in Figure 2 as follows: “Each Employee works for one Department (left-to-right),” and
“Each Department hires (or is worked by) any (zero or more) Employees (right-to-left).”
3 Similarly, you can interpret the ER schema in Figure 2 as follows: “Each Employee manages at most one (zero or one) Department
(left-to-right),” and “Each Department is managed by at most one Employee (right-to-left).”

6

example, the DBMS must reject an attempt to add a row in the Employee table whose
deptNo column contains a value not in the deptNo column of some row in the
Department table. Similarly, the DBMS must reject an update to the deptNo column of
an existing employee row that would violate this constraint.

Deletions that violate a referential integrity constraint can be handled in one of two ways.
First, as with insertions, they can be rejected. Alternately, the deletion could be cascaded
to the rows in the related table. That is, all rows related to the deleted row could also be
deleted, thus retaining the integrity of the database. This specification is appropriately
termed, cascade delete. While somewhat dangerous, cascade delete can be quite useful.
For example, if a payroll system keeps a record of an employee's dependents in a
Dependents table related to the Employee table, referential integrity with cascade delete
is probably appropriate. That is, a dependent cannot be added without a related employee
and when an employee is deleted all of the employee's dependents are also deleted. If
cascade delete is not specified then the dependents must be deleted separately, before the
employee can be deleted.

SQL has seven basic types of data definition statements,

1. Create Database – to create and name a database,
2. Create Domain – to define legal values for columns, in addition to the system

defined data types,
3. Create Table – to define a table and all of its columns and relationships,
4. Create View – to define virtual tables derived from existing tables based on a

query,
5. Alter Table – to modify the column and relationship definitions of an existing

table,
6. Drop Table – to remove a table from a database,
7. Drop View – to remove a view from a database.

Different commercial RDBMSs implement slightly different variations of SQL. This is
particularly true with data types. Microsoft Access, for example, has the data types,
text, integer, double, and timestamp, while Microsoft SQLServer has the
corresponding data types, char and varchar, int, smallint and tinyint, float and
numeric, and datetime and smalldatetime, among others. Furthermore, Access does
not support the definition of domains or views or database triggers. Nor does it support
the Create Database statement. Databases must be created using the Access command
menu (File => New => Database).

Specification of the complete SQL DDL syntax is beyond the scope of this module.
However, following is the basic SQL syntax for creating the Department and Employee
tables. First, a database named, Emp-Dept is created using,

CREATE DATABASE Emp-Dept;

Next, the Department and Employee tables are created in that database,

7

CREATE TABLE Department
(deptNo INTEGER NOT NULL,

deptName VARCHAR(20),
deptBudget DOUBLE,
deptManager INTEGER,
PRIMARY KEY (deptNo)

);

CREATE TABLE Employee
(empNo INTEGER NOT NULL,

empName VARCHAR(20),
ssn CHAR(11),
exemptions INTEGER,
weeklySalary DOUBLE,
ytdGross DOUBLE,
deptNo INTEGER NOT NULL,
PRIMARY KEY (empNo),
FOREIGN KEY (deptNo) REFERENCES Department (deptNo)

);

Primary keys are specified in parentheses following the keyword, PRIMARY KEY. Foreign
keys are specified in a phrase of the form,

FOREIGN KEY (column-name(s)) REFERENCES table-name (column-name(s))

The parameter following the FOREIGN KEY keyword is the name of the column containing
the foreign key (in the current table). It must be followed by the keyword, REFERENCES,
followed by the name of the related table, followed, in parentheses, by the name of the
primary key column in that table.

Since the Department table is created before the Employee table, deptManager cannot
be specified as a foreign key in the initial definition of the Department table. It must be
specified as such after the Employee table is created using an ALTER TABLE command.

ALTER TABLE Department
ADD FOREIGN KEY (deptManager) REFERENCES Employee (empNo);

A referential integrity constraint is established by specifying a foreign key column to be,
not null. For example, deptNo in the Employee table is specified to be not null and
specified to be a foreign key. This establishes the referential integrity constraint that
each employee must work for exactly one department. Since deptManager is not
specified to be, NOT NULL, the database definition allows departments to exist without a
manager. In fact, it is not possible to specify both working for and managing to include
referential integrity constraints. Doing so would cause the system to reject all attempts to
add rows to either table! That is, when the database is created, both tables are empty.
Adding an employee would require the department for which the employee works to exist
in the Department table, but that table is empty. However, adding a department would
require the employee who manages the department to exist in the Employee table, but
that table is also empty.

8

Hence, only one of these constraints can be defined in the database structure. Enforcing
the other constraint requires the creation of a transaction in which rows can be added to
both tables before the constraint is tested. If the constraint is met, then the changes are
committed to the database. If not, then all changes made in the transaction are rolled
back, restoring the database to its state prior to the transaction.

Microsoft access supports SQL DDL. To execute DDL commands use the cascading
menu Query => SQL Specific => Data Definition in its Query module. Then enter the
desired DDL commands and execute the query (Query => Run). However, data
definition is more easily accomplished using its graphical Table Design interface and its
graphical Relationships interface.

Relational Data Manipulation (DML)
Data is obtained from a relational database using SQL retrieval queries. It is written to
the database using SQL update queries or using SQL commands that support "record at a
time" processing via the concept of a cursor. This section will address SQL retrieval and
update queries. Processing via cursors is beyond the scope of this module, as are the
details of stored procedures and database triggers.

Query specifications in SQL are based on relational algebra or relational calculus. What
is important about that concept is that the result of a query is itself, another relation,
which can be stored or used in other queries. There are four basic types of SQL queries,

1. Select – to retrieve selected rows and columns from selected tables, performing
specified calculations on specified columns,

2. Insert – to add rows to a table,
3. Update – to modify the values in a table,
4. Delete – to remove rows from a table.

Select Queries
SELECT queries are used to obtain data from a database. Again, once retrieved, the data
may be further processed and formatted for display on a screen or in a report. The
purpose of the query is to obtain the necessary data. The syntax of a SELECT query is as
follows. For clarity, keywords are capitalized and bold.

SELECT [ALL | DISTINCT] <column expressions>
FROM <table names and optional join specifications>
WHERE <row inclusion conditions>
GROUP BY <grouping expressions>
HAVING <group selection conditions>
ORDER BY <sorting expressions>;

Each line in the above specification, beginning with an SQL keyword is termed a clause.
Clauses do not need to begin on a separate line. They will be written so for clarity. A
SELECT query must have at least two clauses. It must begin with a Select clause that lists
the column expressions (columns and column calculations) needed, followed by a From

9

clause that names the tables from which those columns are accessed and specifies any
Join conditions if the columns are from more than one table. It must end with a
semicolon. Hence, a minimal SQL query has the form:

SELECT [ALL | DISTINCT] <column expressions>
FROM <table names and optional join specifications>;

where [ALL | DISTINCT] means that, optionally, one of the keywords ALL or DISTINCT
may be specified. If ALL is specified, then, all rows selected in the query are included in
the result, even if there are duplicate rows. If DISTINCT is specified then, any duplicate
rows are removed from the query result. If neither is specified, ALL is assumed.

<column expressions> is a list of columns and column calculations, separated by
commas, specifying the columns to include in the query result. <table names and

optional join specifications> is simply a table name for single table queries or an
expression specifying how the tables are to be combined for multi-table (or JOIN)
queries. JOIN queries, which typically combine tables along relationships, are discussed
in the next section.

The following simple SELECT query:

SELECT empNo, empName, ssn, exemptions, weeklySalary, ytdGross,
deptNo

FROM Employee;

produces a result table, termed a recordset, containing the entire Employee table:

empNo empName ssn exemptions weeklySalary ytdGross deptNo

1 Smith, Joseph 111-11-1111 1 4000 40000 3
2 Jones, David 222-22-2222 2 3200 32000 2
3 Olson, Jane 333-33-3333 1 3800 38000 3
4 Neff, Arnold 444-44-4444 3 2300 23000 1
5 Homes, Denise 555-55-5555 2 1400 14000 1
6 Naumi, Susan 666-66-6666 2 3500 35000 2
7 Young, John 777-77-7777 1 3000 21000 3

Columns appear in the order specified in the Select clause. Column headings default to
the column names. Note that the column headings are for display purposes only and are
not a separate row of the recordset which may, for example, be sent across a network to a
Client computer for display and manipulation4. A different heading can be specified for a
column expression using the keyword AS, followed by the desired column heading. In
Microsoft Access, if the desired heading is a reserved word or contains embedded blanks,
it must be enclosed in brackets. For example, the following query changes the column
headings for the empNo and exemptions columns, but leaves the other column heading at
their default values.

4 Note that if the client computer changes any values in the record set, these changes are not automatically reflected in the database.
To change the database, the client computer must compose an update query and request its execution by the DBMS on the Server
computer.

10

SELECT empNo AS [Emp Number], empName, ssn, exemptions AS Exempt,
weeklySalary, ytdGross, deptNo

FROM Employee;

Since there is no ORDER BY clause, the row ordering is arbitrary. If row ordering is
desired, it must be specified in an ORDER BY clause. Often a DBMS will use either
chronological or primary key order if an ORDER BY clause is not specified. However, this
varies between different DBMSs.

Column names must be qualified by their table name if there is any ambiguity (i.e., if
there are duplicate column names in the tables involved in the query). A fully qualified
column name is <table name>.<column name>. For example, the empNo column in the
Employee table has the fully qualified name, Employee.empNo. A shorthand notation for
"all columns" in a table is <table name>.*, or just *. Hence an equivalent query to that
given above is,

SELECT Employee.*
FROM Employee;

A SELECT query may have additional clauses to specify row selection and ordering in the
result table. A WHERE clause specifies row selection criteria. An ORDER BY clause
specifies the ordering criteria for the result table. The basic syntax for these clauses is:

WHERE <condition list>
ORDER BY <sorting list>

where <condition list> defines rows to be included in the result table; <sorting
list> lists the columns used to sort the result, each optionally followed by ACS for
ascending order or DESC for descending order. If neither is specified, ASC is assumed.
Again, SELECT and FROM clauses are required, WHERE and ORDER BY clauses are optional.
A query may contain either, both, or neither clause depending on the retrieval
requirements.

The following query retrieves the Employee Number, Name, and Salary of all employees
with salary greater than $3,500, sorted by employee name.

SELECT empNo, empName, weeklySalary
FROM Employee
WHERE weeklySalary > 3500
ORDER BY empName;

The result of this query would be displayed as:

empNo EmpName weeklySalary

3 Olson, Jane 3800
1 Smith, Joseph 4000

The <condition list> in a WHERE clause may include the comparison operators =, >,
>=, <, <= and the logical operators, AND, OR and NOT as well as any built-in functions

11

supplied by the DBMS. Built-in functions vary widely in commercial DBMSs,
particularly with respect to date and text manipulation and type conversions. Parentheses
may be used as necessary and are recommended for complex WHERE clauses to enhance
readability. For example to include employees in department 3 who have weekly salary
over $3,500 and employees in department 2 who have weekly salary over 3000 and all
employees in department 1, use the following WHERE clause,

SELECT empNo, empName, weeklySalary
FROM Employee
WHERE (deptNo = 3 AND weeklySalary > 3500)

OR (deptNo = 2 AND weeklySalary > 3000)
OR (deptNo = 1)

which would result in:

empNo EmpName weeklySalary

1 Smith, Joseph 4000
2 Jones, David 3200
3 Olson, Jane 3800
4 Neff, Arnold 2300
5 Homes, Denise 1400
6 Naumi, Susan 3500

The <sorting list> of an ORDER BY clause lists columns from major to minor
precedence, separated by commas. Each may specify ASC for ascending or DESC for
descending. For example, to sort the result table in the above query alphabetically
(ascending) within descending department numbers, use the following ORDER BY clause,

SELECT empNo, empName, weeklySalary
FROM Employee
WHERE (deptNo = 3 AND weeklySalary > 3500)

OR (deptNo = 2 AND weeklySalary > 3000)
OR (deptNo = 1)

ORDER BY deptNo DESC, empName

which would result in:

empNo EmpName weeklySalary

3 Olson, Jane 3800
1 Smith, Joseph 4000
2 Jones, David 3200
6 Naumi, Susan 3500
5 Homes, Denise 1400
4 Neff, Arnold 2300

More complex queries can perform column aggregations such as averages, counts,
maximums, minimums, and sums (aggregation queries) and groupings (Group By
queries), access data from multiple tables (e.g., join queries), and use SELECT queries
within the WHERE clause to define conditions for row inclusion (Nested queries).
Aggregate and nested queries are discussed below. JOIN queries are discussed in the

12

next section. Nested queries are discussed in the section following the section on join
queries.

Aggregation Queries
An aggregation query aggregates or computes a result from all specified rows in the
result table. The syntax for an aggregation is,

<aggregate function> ([ALL | DISTINCT] <column expression>)

where, <aggregate function> is one of the aggregate functions, AVG() for average,
COUNT() for number of columns, MAX() for maximum value, MIN()for minimum value or
SUM() for sum of all values. Again, ALL and DISTINCT are optional, specifying if
duplicates are to be included (ALL) or excluded (DISTINCT) in the aggregation operation.
The default is ALL if neither is specified. The <column exprexssion> is any valid
expression involving columns in the table. All commercial RDBMSs provide the above
aggregation functions. Microsoft Access includes the additional aggregation functions,
FIRST() for first value, LAST() for last value, STDEV()for standard deviation and VAR()
for variance.

Consider, for example, the following aggregation query,

SELECT Count(empNo), Avg(weeklySalary), Max(weeklySalary),
Sum(weeklySalary), Avg(weeklySalary * 1.1)

FROM Employee

It produces the following, one row, result table:

CountOf empNo AvgOf weeklySalary MaxOf weeklySalary SumOf weeklySalary Expr1

7 3028.571428 4000 1400 3331.428571

Aggregation queries, can, of course, include selection criteria to restrict the rows included
in the aggregation functions, as illustrated by the following aggregation query and result:

SELECT Count(empNo), Avg(weeklySalary), Max(weeklySalary),
Sum(weeklySalary)

FROM Employee
WHERE deptNo = 3

CountOf empNo AvgOf weeklySalary MaxOf weeklySalary SumOf weeklySalary

3 3600 4000 10800

Group By Queries
Rather than having only one row containing the aggregation results for the entire query, a
GROUP BY query produces a row containing sub-aggregations (e.g., subtotals) for each
value in the specified GROUP BY column(s). For example, a GROUP BY query could be
used to compute the aggregate values for each department, displayed in a separate row of
the result table. Each combination of values in the GROUP BY columns defines a separate
row in the result table. The clause, GROUP BY deptNo, for example, produces a result
table with one row per department. Each row has a column for each aggregate function

13

for containing the sub-aggregation for that department. Such an aggregate query and its
result are shown below.

SELECT deptNo, Count(empNo), Avg(weeklySalary), Sum(weeklySalary)
FROM Employee
GROUP BY deptNo
ORDER BY deptNo

deptNo CountOf empNo AvgOf weeklySalary SumOf weeklySalary

1 2 1850 3700
2 2 3350 6700
3 3 3600 10800

More than one column can be specified in a GROUP BY clause, column names are
separated by commas. In this case, one row appears in the result table for each unique
combination of values in the GROUP BY columns. Although not necessary, it is often
useful to sort the result by the grouping column(s).

A syntactic rule for SQL GROUP BY queries is that any columns that appear in the SELECT
clause without being in an aggregation function must be in the GROUP BY clause. All
others must be aggregated. In the above example, all columns in the Select clause except
deptNo must appear in aggregate functions. To illustrate why this is true, consider the
following, syntactically incorrect, aggregate query:

SELECT deptNo, empNo, Avg(weeklySalary), Sum(weeklySalary)
FROM Employee
GROUP BY deptNo
ORDER BY deptNo

The GROUP BY clause specifies that there is to be one row per department in the result
table. However, there are many employees in each department. Hence, there are many
possible values of empNo for that column in each row of the result table. Since the DBMS
cannot determine which value of empNo to use, it must reject the query as being
syntactically incorrect. Indeed, an attempt to execute this query will result in an error.

Optionally, selection criteria of two different types can be specified for GROUP BY
queries. Selecting rows from the original table to be included in the aggregation is
specified using a Where clause, as in any other type of SELECT query. However, SQL
also provides a means of selecting rows from the result table after the aggregation has
been performed. This is specified using a HAVING clause. A single query can include
both WHERE and HAVING clauses.

To illustrate the difference between Where and having, consider the following query.

14

SELECT deptNo, Count(Empno), Avg(weeklySalary), Sum(weeklySalary)
FROM Employee
WHERE weeklySalary <= 3500
GROUP BY deptNo
ORDER BY deptNo

The result table is as follows.

deptNo CountOf empNo AvgOf weeklySalary SumOf weeklySalary

1 2 1850 3700
2 2 3350 6700
3 1 3000 3000

This query first selects rows from the Employee table whose weeklySalary is less than
or equal to (≤) $3,500. It then calculates the aggregations, count, average and sum for
those rows. Hence, employees 1 and 3, whose weekly salaries are $4,000 and $3,800,
respectively, are not included in the aggregations. Since both of these employees work
for department 3, that department shows a count of 1 employee rather than 3 (i.e., only
one of the three employees with deptNo equal to 3 is included in the aggregations).

Now consider the following GROUP BY query that uses a HAVING clause rather than a
WHERE clause.

SELECT deptNo, Count(Empno), Avg(weeklySalary), Sum(weeklySalary)
FROM Employee
GROUP BY deptNo
HAVING Avg(weeklySalary) <= 3500
ORDER BY deptNo

This query calculates the aggregations count, sum, and average using all rows from the
Employee table. It then uses the conditions specified in the HAVING clause to determine
which rows should be included in the result table. Its result table is shown below.

deptNo CountOf empNo AvgOf weeklySalary SumOf weeklySalary

1 2 1850 3700
2 2 3350 6700

It only includes those departments whose average weekly salary is less than or equal to
3500. Since the average weekly salary for department 3 is $3,600, (($4,000 + $3,800 +
$3,000) / 3), that department is not included in the result table. The average salary for
each of the other departments is less than $3,500; therefore they are included in the result
table.

Of course, the important issue is to first determine what data the system users require and
then to develop the appropriate SQL query to produce it. If the users need aggregations
that include only employees who have a weekly salary less than $3,500, then the former
query is appropriate. If they need aggregations for departments whose average salary is
less than $3,500, then the latter query is appropriate. The determination of these
requirements is, again, a principle concern in systems analysis and design activities.

15

Join Queries
To satisfy user information requirements, it is often necessary to obtain data from two or
more tables. Join queries are used for this purpose. They combine rows from different
tables into a single row in the result table where column values in those rows meet the
specified join conditions.

Tables are often joined along relationships; that is, the join condition specifies that the
primary key in one table equals the corresponding foreign key in the related table.
Employee and Department tables, for example, have two Primary Key-Foreign Key
pairs, Department.deptNo (primary key) corresponding to Employee.deptNo (foreign
key) and Employee.empNo (primary key) corresponding to Department.deptManager
(foreign key). The join condition to combine employees with the departments for which
they work is:

Employee.deptNo = Department.deptNo

Join conditions typically include fully qualified column names using the "dot" notation,
table.column (some DBMSs require it). In the case of joining employees with the
departments for which they work, fully qualified column names must be used since the
primary key and foreign key columns have the same name (i.e., deptNo).

A join query must specify what to do if there are rows in one table without corresponding
rows in the other table. For example, while each employee must work for a department,
there may be departments for which no employees work. Should such departments be
included in the result table or not? This is specified in the type of join as specified below:

Join Type Result Table
INNER JOIN Includes only rows where the <join condition> is

explicitly satisfied (there are corresponding values in both
tables).

[LEFT | RIGHT] OUTER JOIN Includes all rows in the table on the left (or right) but only
those rows in the table on the right (or left) where the
<join condition> is explicitly satisfied (has
corresponding values in the other table), where left and
right refer to the order in which the tables are listed in the
query.

FULL OUTER JOIN Includes all rows in both tables.

There are two different SQL variations for specifying Join conditions. The first, termed,
SQL1, has no explicit JOIN keyword. Join conditions are specified in the WHERE clause.
Inner joins are specified using =. Outer joins are specified using DBMS specific
operators such as *= (left), =* (right), or *=* (full outer). The second, termed SQL2
specifies join conditions in the FROM clause. It uses explicit keywords to specify the type
of join.

The SQL1 syntax for a JOIN query is:

16

SELECT <column expressions>
FROM <table names separated by commas>
WHERE <join condition and other selection conditions>

The SQL2 syntax for a JOIN query is:

SELECT <column expressions>
FROM <table1 name> <join type> <table2 name> ON <join condition>
WHERE <selection conditions>

where <join type> is one of, [INNER] JOIN, RIGHT [OUTER] JOIN, LEFT [OUTER]

JOIN, or FULL [OUTER] JOIN. Microsoft Access does not support the FULL OUTER

JOIN. In addition, the keyword, OUTER is optional. If no join type is specified, the default
is INNER JOIN. Of course, JOIN queries can include ORDER BY and GROUP BY clauses.

SQL1 was the original SQL specification and several RDBMSs continue to support it
(virtually all RDBMSs support its syntax for INNER JOIN). The newer RDBMSs also
support the SQL2 syntax. However, even within the SQL1 and SQL2 specifications,
there are slight variations among commercial DBMSs. Both the American National
Standards Institute (ANSI) and the International Standards Organization (ISO) are
responsible for specifying standards to provide consistency across different vendors' SQL
implementations. Even so, numerous variations exist. Each vendor provides
documentation for its specific SQL implementation.

Suppose there is a user requirement to produce an alphabetically ordered list of
employees who work for departments, including the employee's name and weekly salary,
along with the department name and department budget for the department for which the
employee works, only including departments for which employees work. The SQL query
must join a row from the Employee table with a row from the Department table when the
value of deptNo in the Employee table matches the value of deptNo in the Department
table. It must be an inner join, since it includes rows from the Employee table having a
matching row in the Department table and only rows from the Department table having
a matching row in the Employee table5.

The appropriate SQL1 query is given by,

SELECT empName, weeklySalary, deptName, deptBudget
FROM Employee, Department
WHERE Employee.deptNo = Department.deptNo
ORDER BY empName

The corresponding SQL2 query is given by,

5 In this case, assuming the Employee table is listed first, the INNER JOIN and LEFT OUTER JOIN are equivalent since each
employee must work for a department (referential integrity).

17

SELECT empName, weeklySalary, deptName, deptBudget
FROM Employee INNER JOIN Department

ON Employee.deptNo = Department.deptNo
ORDER BY empName

The result table is as follows. It has seven rows, one for each row in the Employee table,
since each employee work for a department.

empName weeklySalary deptName deptBudget
Homes, Denise 1400 Marketing 220000
Jones, David 3200 Operations 400000
Naumi, Susan 3500 Operations 400000
Neff, Arnold 2300 Marketing 220000
Olson, Jane 3800 Accounting 100000
Smith, Joseph 4000 Accounting 100000
Young, John 3000 Accounting 100000

Again, the join condition, Employee.deptNo = Department.deptNo is written in the
fully qualified form, <table name>.<column name>. This form is required since the
column name is ambiguous. That is, deptNo is a column name in both tables.
Specifying,

deptNo = deptNo

does not make sense and, if the DBMS executed the query would result in every row in
the Employee table being joined with every row in the Department table.

To include all rows in the Employee table, but only rows in the Department table having
a matching row in the Employee table, use an outer join, rather than an inner join. An
Outer join is specified as including all rows in the left or right table. The left table is
simply the one on the left, preceding the OUTER JOIN keyword. The right table is the one
on the right, following the OUTER JOIN keyword. Hence, this query is specified as,

SELECT empName, weeklySalary, deptName, deptBudget
FROM Employee LEFT OUTER JOIN Department

ON Employee.deptNo = Department.deptNo
ORDER BY empName

It uses a left outer join because Employee is the table to the left of the OUTER JOIN
keyword. Given the referential integrity constraint that all employees must work for a
department, the inner and left outer joins produce exactly equivalent results. To include
all Departments, even if those for which no employees work, use

SELECT empName, weeklySalary, deptName, deptBudget
FROM Employee RIGHT OUTER JOIN Department

ON Employee.deptNo = Department.deptNo
ORDER BY empName

It uses a right outer join because Department is the table to the right of the OUTER JOIN
keyword. To include all rows from both tables use a full outer join as follows.

18

SELECT empName, weeklySalary, deptName, deptBudget
FROM Employee FULL OUTER JOIN Department

ON Employee.deptNo = Department.deptNo
ORDER BY empName

Again, given the referential integrity constraint, the full outer join produces the same
result as the RIGHT OUTER JOIN with Department on the right (or the LEFT OUTER JOIN
with Department on the left). In fact, for this set of data, since each department has
employees that work for it, the inner and all three outer joins produce the same result.

As discussed above, Department and Employee have two relationships, Employee works
for Department and Employee manages Department. The above queries use the "works
for" relationship to join these two tables. The following query uses the "manages"
relationship to obtain the department name, budget, and employee number and name of
the department's manager for all departments that have a manager.

SELECT deptName, deptBudget, deptManager, empName
FROM Employee INNER JOIN Department

ON Employee.empNo = Department.deptManager
ORDER BY deptName

The result table is follows. It has only three rows, one for each department row.

deptName deptBudget deptManager empName
Accounting 100000 3 Olson, Jane
Marketing 220000 4 Neff, Arnold
Operations 400000 6 Naumi, Susan

Since all departments have managers, the INNER JOIN and the RIGHT OUTER JOIN of the
above query will produce the same result. However, not all employees manage a
department. Hence the INNER JOIN and LEFT OUTER JOIN produce different results.
The latter includes all employees, not just those that manage departments. Rows for
employees that do not manage departments contain null values for the columns,
deptName, deptBudget and deptManager as illustrated below.

SELECT deptName, deptBudget, deptManager, empName
FROM Employee LEFT OUTER JOIN Department

ON Employee.empNo = Department.deptManager
ORDER BY deptName

The result table is follows. It has one row for each employee.

deptName deptBudget deptManager empName

Young, John
Homes, Denise
Jones, David
Smith, Joseph

Accounting 100000 3 Olson, Jane
Marketing 220000 4 Neff, Arnold
Operations 400000 6 Naumi, Susan

19

A JOIN query can include as many tables as necessary to obtain the needed data, each
having its own join specification. Furthermore, a JOIN query can reference the same
table more than once, provided it makes sense to do so. Given a set of tables, like
Employee and Department, having two relationships, a JOIN query can combine rows
from these tables using one relationship and then combine rows from that result (table)
using the other one. To illustrate this, consider the following query to obtain the
employee number, name of each employee, the department number, name of the
department for which that employee works, and the employee number and name of the
manager of that department.

SELECT Emp.empNo, Emp.empName, Department.deptNo, deptName,
Emp2.empNo, Emp2.empName

FROM (Department INNER JOIN Employee AS Emp
ON Department.deptNo = Emp.deptNo)
INNER JOIN Employee AS Emp2
ON Department.deptManager = Emp2.empNo

ORDER BY Emp.empName

Note the use of the aliases, Emp and Emp2 specified after the keyword, AS when the
Employee table is referenced. These differentiate the context for the columns, empNo and
empName in the query. Emp.empNo and Emp.empName refer to the empNo and empName
columns when Department and Employee are joined on

Department.deptNo = Emp.deptNo

since the alias, Emp, is defined in that join specification and used to qualify the join
attribute deptNo in the Employee table. Emp2.empNo and Emp2.empName refer to the
empNo and empName columns when that intermediate result table is joined with Employee
on

Department.deptManager = Emp2.empNo

since the alias, Emp2, is defined in that join specification and used to qualify the join
attribute empNo in the Employee table.

The result table is given as follows.

Emp.empNo Emp.empName deptNo deptName Emp2.empNo Emp2.empName

5 Homes, Denise 1 Marketing 4 Neff, Arnold
2 Jones, David 2 Operations 6 Naumi, Susan
6 Naumi, Susan 2 Operations 6 Naumi, Susan
4 Neff, Arnold 1 Marketing 4 Neff, Arnold
3 Olson, Jane 3 Accounting 3 Olson, Jane
1 Smith, Joseph 3 Accounting 3 Olson, Jane
7 Young, John 3 Accounting 3 Olson, Jane

The equivalent SQL1 query is:

20

SELECT Emp.empNo, Emp.empName, Department.deptNo, deptName,
Emp2.empNo, Emp2.empName

FROM Department, Employee AS Emp, Employee AS Emp2
WHERE Department.deptNo = Emp.deptNo AND

Department.deptManager = Emp2.empNo
ORDER BY Emp.empName

Any number of tables can be joined in a single query, provided appropriate join
conditions exist. Relationships in a Data Model or Class Diagram should document
relationships that must be represented by primary key-foreign key pairs in the database.
These can be used to specify meaningful joins. For example, a database used to support
sales order processing would likely have tables representing customers, salespeople,
orders, line items and products. Customers would likely have relationships with the
salespeople and with the orders. Orders would have a relationship with line items, each
of which would have a relationship with products. The database would need to include a
primary key - foreign key pair for each relationship. Producing picking tickets or
invoices would require data from all five of these entities. Hence, the query to produce
picking tickets would need to join all five tables.

Nested Select Queries
The purpose of a Nested SELECT query is to enable selection based on the result of data
values that can only be specified as the result of another query. For example, suppose the
users require a list of all employees who work for the same department as employee
number 5. This could be done using two separate queries, the first to determine the
department number of the department for which employee number 5 works and using that
result in the second query; however this requires procedural programming to store the
department number and use it in the second query. It can also be done using a cross
product query and aliases (joining all employees to all other employees); however, this is
extremely inefficient and quite confusing. Nested SELECT queries provide this capability
directly.

The WHERE clause in a Nested SELECT query uses the result of another, so called, nested
query, as its selection criteria. The WHERE clause for such a query is of one of the
following forms,

WHERE <column expression > [NOT] = (<select one>)
WHERE <column expression> [NOT] IN (<select list>)
WHERE <column expression> [NOT] {= | < | > |>= | <=}

{ALL | SOME | ANY} (<select list>)
WHERE [NOT] EXISTS (<select expression>)

Optional parameters are in square brackets. Required, choice parameters (i.e. choose
one) are in curly brackets. <select one> is a SELECT query that results in a single
value, i.e., one column from one row. <select list> is a SELECT query that results in a
set of values, i.e., one column from multiple rows. <select expression> is a SELECT
query including SELECT and FROM clauses and optionally a WHERE clause. The WHERE
clause of a <select expression> may, itself specify a nested query.

21

For example, the following query results use the first form (<select one>) to produce
the above mentioned result (the employee number, name and department number of all
employees who work for the same department as the employee whose employee number
is 5).

SELECT empNo, empName, deptNo
FROM Employee
WHERE deptNo = (SELECT deptNo

FROM Employee
WHERE empNo = 5);

The nested query,

SELECT deptNo
FROM Employee
WHERE empNo = 5

results in the single value, 1, the department number of the department for which
employee number 5 works. The main query selects all employees who work for that
department. The result table for the above Nested SELECT query is,

empNo empName DeptNo

4 Neff, Arnold 1
5 Homes, Denise 1

Of course, Homes is employee number 5. As mentioned above, the same result can be
obtained using a cross product query and aliases as follows.

SELECT Emp.empNo, Emp.empName, Emp.deptNo
FROM Employee AS Emp INNER JOIN Employee AS Emp2

ON Emp.deptNo = Emp2.deptNo
WHERE Emp2.empNo = 5

Suppose users require a list of the employee number, name, weekly salary and
department number of all employees whose salary is greater than that of all employees in
department 1. This requires the third form of nested queries as follows,

SELECT empNo, empName, weeklySalary, deptNo
FROM Employee
WHERE weeklySalary > ALL (SELECT weeklySalary

FROM Employee
WHERE deptNo = 1);

It query result is as follows,

empNo EmpName WeeklySalary deptNo

1 Smith, Joseph 4000 3
2 Jones, David 3200 2
3 Olson, Jane 3800 3
6 Naumi, Susan 3500 2
7 Young, John 3000 3

22

The nested query retrieves two records 2300 and 1400. Since all the other employees’
weekly salaries are greater than both these numbers, the five remaining employees are
retrieved in the main query.

The nested query does not need to reference the same table as the main query, it may
reference any table in the database. Consider a query to obtain the employee number,
name and department number of all employees who work for the department with the
maximum budget (if more than one department has a budget equal to the maximum, the
query will list all employees who work for any of those departments).

SELECT empNo, empName, deptNo
FROM Employee
WHERE deptNo IN (SELECT deptNo

FROM Department
WHERE deptBudget = (SELECT max(deptBudget)

FROM Department));

This Nested SELECT query has a Nested SELECT query in the WHERE clause of its Nested
SELECT query! The innermost query,

SELECT max(deptBudget)
FROM Department

results in the value 400000, the maximum department budget. The next outer query,

SELECT deptNo
FROM Department
WHERE deptBudget =(SELECT max(deptBudget)

FROM Department)

results in a list having one value, 2, the department number of the department having this
budget. In this case there is only one such department. However, since it is possible for
more than one department to have this same budget, this nested query results in a
<select list> rather than a <select value>. The query result is as follows.

empNo EmpName deptNo

2 Jones, David 2
6 Naumi, Susan 2

Data Maintenance Queries
As discussed above, SQL has three types of data maintenance queries, INSERT, UPDATE
and DELETE. INSERT queries add rows to a table. They can take one of two forms,

23

INSERT INTO <table name> (<column names>) VALUES (<column values>);

INSERT INTO <table1 name>
SELECT <table2 column names>
FROM <table2 name>
WHERE <conditions>;

In the first form, column names are separated by commas, as are the corresponding
column values. In the second form, values are obtained from an existing table. The
second form is useful, for example, to archive old data, prior to deleting it from an
operational database. The following INSERT query uses the first form to add a new row
to the Employee table having the specified values.

INSERT INTO Employee (empNo, empName, ssn, exemptions,
weeklySalary, deptNo) VALUES (8, "Loud, Isabel", "779-92-
9929", 2, 3700, 2);

If the value specified for deptNo does not exist in the deptNo column of the Department
table, this INSERT query would be rejected and an error message generated. To support
complex transaction processing, SQL has COMMIT and ROLLBACK commands. After
executing the above query, the insert is not permanently added to the database until a
COMMIT command is executed. Alternately, the database can be restored to its state prior
to the execution of the INSERT query by executing a ROLLBACK command. Their syntax
is simply,

COMMIT; or ROLLBACK;

When a COMMIT command is executed, all changes made since the last COMMIT or
ROLLBACK command was executed are made permanent. Changes cannot be rolled back
after they have been committed. Similarly, if changes are rolled back, the queries must
be re-run before they can be committed and made. Similarly, if changes are rolled back,
the queries must be re-run before they can be committed and made permanent. Note that
Microsoft Access does not support the COMMIT or ROLLBACK commands. Once a query is
executed, the database is updated. It cannot be rolled-back to a prior state. For this
reason it is crucial to make a backup copy of your database prior to testing any UPDATE
query in Access.

An UPDATE query is used to modify the values of existing rows in a table. Its syntax is,

UPDATE <table name> SET <column name> = <expression>
[,<column name> = <expression>]*

WHERE <conditions>

The [,<column name> = <expression>]* means that, additional column updates
can be specified, each separated by a comma. For example, the following query
increases the weekly salary of each employee in department 3 by 10%.

24

UPDATE Employee SET weeklySalary = weeklySalary * 1.1
WHERE deptNo =3;

Executing a COMMIT command would make this change permanent (it is made permanent
when the query is executed in Access).

A DELETE query is used to remove rows from a table. Its syntax is,

DELETE FROM <table>
WHERE <conditions>

For example, the following query permanently deletes employee number 8.

DELETE FROM Employee
WHERE empNo = 8;

The following permanently deletes all employees who work for department 3

DELETE FROM Employee
WHERE deptNo = 3;

Again, executing a COMMIT command would make the deletions permanent (each is made
permanent when the query is executed in Access). If cascade delete is specified for the
Employee work for Department relationship (i.e., for the deptNo foreign key in the
Employee table) and department 3 is deleted, then effect on the Employee table is the
same as the above query and COMMIT command.

Bibliography
Codd, E. F. (1970) "A Relational Model for Large Shared Databanks", Communications

of the ACM, Vol. 13, No. 6, pp. 377-390.
Kent, W. (1983) “A Simple Guide to Five Normal Forms in Relational Database

Theory”, Communications of the ACM, Vol. 26, No. 2, pp. 120-125.

	Department Table
	
	MaxOf weeklySalary
	Group By Queries
	Join Queries
	Nested Select Queries

	Data Maintenance Queries

